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Abstract

We describe a new tool, which we call the relative Dehn method, for proving 1-dimensional cobound-
ary expansion of coset complexes. By applying this method to links, we prove that certain “Bs-type
coset complexes” constructed by O’Donnell and Pratt [OP22] are 1-cosystolic expanders over Fy and
F3. Our method is suited to proving expansion over specific coefficient rings, whereas the pre-existing
method due to Kaufman and Oppenheim [KO21], which we now term the absolute Dehn method, proves
expansion over all rings (and even over nonabelian groups). Their method applies to the “As-type coset
complexes” [KO18|, but appears to be too strong for the “Bs-type complexes”, which appear to not ex-
pand over certain coefficient groups. Our method requires using a computer to verify vanishing homology
of certain “base case” complexes and then “lifting” using group-theoretic derivations.

1 Introduction

1.1 Background

Defining simplicial complexes. We begin by defining simplicial complexes.

Definition 1.1. A (finite, pure) d-dimensional simplicial complex X is defined by a finite collection, denoted
X(d), of sets of size d + 1. We term the elements in X(d) facets.! We define the vertices of X as the set of
elements occurring in any facet:

V)= |J o

oceXx(d)

Given a simplicial complex X, we define the set X(i) of i-faces for 0 < i < d as size-(i + 1) sets contained in

any facet:
X(i)={c CV(X):|o| =i+ 1A 3T € X(d) such that 7 D o}.

We identify the O-faces (elements of X(0)) with the vertices V(X).? The 1-faces (elements of X(1)) are
unordered pairs of vertices, and we call them edges. The 2-faces (elements of X(2)) are unordered triples of
vertices, and we call them triangles. O

Definition 1.2. A weighted simplicial complex is defined by a simplicial complex X together with a fully
supported probability distribution mg on the facets X(d). mq induces a distribution m; on the i-faces X(¢); this
is the distribution that samples a random facet o ~ 74 and then sampling a uniformly random size-(i + 1)
subset of o. O

Thus, simplicial complexes generalize graphs (indeed, a 1-dimensional simplicial complex is precisely a
graph with no isolated vertices). The (weighted) graph corresponding to the vertices and edges of a complex
X is called the 1-skeleton of X.
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1We are only concerned with pure simplicial complexes in this paper, wherein all facets have the same size (d + 1). More
generally, a simplicial complex is any downward-closed collection of subsets (called “faces”), wherein maximal sets (“facets”) may
have different sizes.

2Technically, this is an abuse of notation, since ¥(0) actually equals the set of singleton sets of vertices, i.e., ¥(0) = {{v} :

veV(X)}.




Introduction to high-dimensional expansion. The concept of high-dimensional expansion (HDX) of
simplicial complexes and related objects has played an important role in quite a number of exceptional
recent breakthroughs: e.g., in the analysis of Markov chains [AOV21; ALOV24], in coding theory [EKZ24;
DEL™22; PK22|, in quantum complexity [ABN23], property testing [DK17; DDL24; BM24; BLM24|, in-
approximability [BMVY25|, and in constructions of vertex expander graphs [HLM™25a; HLM™25b].Very
informally, a d-dimensional simplicial complex is an “HDX” if it is “sparse” and “well-connected” in a spectral
or topological sense.

In the case d = 1, simplicial complexes are graphs, and “HDX-ness” is simply the classical notion of
expander graphs. Recall that for graphs, there are two main definitions for expansion, edge expansion and
spectral expansion, between which Cheeger’s inequality [Alo86] gives a bidirectional relation.

Unfortunately, it turns out that once d > 1, even defining HDX becomes subtle, because there is a
glut of inequivalent notions of expansion. Indeed, applications of HDXs often seem to use bespoke notions
of expansion suited for particular situations. As an example, the aforementioned recent breakthroughs in
agreement testing [BLM24; DDL24] and low-soundness PCPs [BMVY25] needed HDXs with both good
“spectral expansion” and a very strong variant of “coboundary expansion” — for which currently only a
single family of simplicial complexes, the “Cy-type affine building quotients” due to [CL25|, fits the bill.

Our setting: 1-coboundary expansion. The 0-coboundary expansion of a complex is the edge expan-
sion of its 1-skeleton in the usual graph-theoretic sense. In this work, we study one particular notion of
high-dimensional expansion called “1-coboundary expansion”, which is a “higher-dimensional” analogue of
0-coboundary expansion. 1-coboundary expansion is defined with respect to a “coefficient group” T' (which
may even be nonabelian; a complex might be a good 1-coboundary expander over one I' but not another I".

Informally, 1-coboundary expansion can be viewed as a property testing guarantee for certain natural
constraint satisfaction problems (CSPs) associated to simplicial complexes, where the alphabet is T', variables
correspond to vertices, and constraints correspond to edges. We do not define 1-coboundary expansion
formally in this introduction; instead, we describe a condition which implies 1-coboundary expansion in the
specific setting of symmetric complexes (with the uniform weight distribution), which is all that we will
need for the purposes of this paper. (See §2.3.1 below for the definition of coboundary expansion for general
complexes.)

It is a well-known fact in graph theory that an edge-symmetric graph with diameter Ry has edge-
expansion (a.k.a. 0-coboundary expansion) at least 1/(2Rp) (see, e.g., [Chu96]). In a (symmetric) complex
of dimension at least 2, 1-dimensional coboundary expansion over I' is implied by a “higher-dimensional”
isoperimetric property, which we call tautness. We say a complex X is (Rg, R1)-(homologically) taut over T
if every “loop” of length at most Ry in X has “area at most Ry over I (we shall explain these terms in more
detail momentarily). By the so-called cones method [Grol0; KO21|, a symmetric complex X with diameter
Ry which is (2Ry + 1, Ry)-homologically taut over I" has 1-coboundary expansion at least 1/Ry over I' (see
Definition 2.35 and Theorem 2.36 below).

Forgetting about I' momentarily, very roughly, a 2-dimensional simplicial complex can be visualized as a
surface in 3-dimensional space, and the area of a loop L on the surface is the smallest area of any subsurface
whose boundary is L. To be more formal, a proper loop of length L in X is simply a sequence of vertices
(ug,u1,...,ur—1,ur, = ug) such that each successive pair of vertices is an edge, i.e., {ug, ug41} € X(1). The
area of a loop L over a ring T is a quantity denoted AL (L) € NU {oo}. (Rg, R1)-homological tautness of X
over I posits that every proper loop L of length in X at most Ry satisfies AL (L) < R;.

In the case I' = Zs, it is not too hard to formally define area: Given a loop L, a filling of L is a set
of triangles T' C X(2) whose boundary is L, where the boundary of a set of triangles T is the set of edges
incident to an odd number of triangles in T'. AZy(L) equals size of the smallest filling of L if one exists, and
oo if none exists. To define area over groups aside from Zs, we need a bit more setup, in particular notions
like oriented triangles and antisymmetric functions, but the definition is intuitively the same.

Connectedness. We say that a simplicial complex X is 0-connected if its 1-skeleton is connected in the
usual graph-theoretic sense. This is equivalent to having finite diameter, and to having positive 0-coboundary
expansion (i.e., edge expansion). Analogously, positive 1-coboundary expansion over I' is equivalent to a
notion called homological 1-connectedness over I'. Homological 1-connectedness over I is also equivalent to
the “absence of holes”, in the sense that every loop has finite area over I



A weaker notion: 1l-cosystolic expansion. At times, it is convenient to also study a weaker variant of
1-coboundary expansion over I, called 1-cosystolic expansion. Morally, 1-cosystolic expansion is equivalent to
1-coboundary expansion without the “global” property of homological 1-connectedness; hence, “1-cosystolic
expansion over I' + homological 1-connectedness over I' = 1-coboundary expansion over I'”. (For a 0-
dimensional analogy: Suppose you have a graph and you want to show that it is an edge expander, but
you do not know how to show that it is connected. Therefore, you settle for showing that each connected
component of the graph is an edge expander with many vertices. This is precisely the notion of 0-cosystolic
expansion.) The main advantage of studying cosystolic expansion, as opposed to coboundary expansion, is
that it can be established via local-to-global arguments. These arguments are well-known at this point in
the HDX literature; see, e.g., [EK16; DD24a]. At the same time, cosystolic expansion (even over Zs) is still
powerful enough for interesting applications, including topological expansion [Grol0], locally testable and
quantum LDPC codes [EKZ24; DEL"22; PK22|, and sum-of-squares lower bounds [DFHT21; HL22|.

We remark that we currently (to the best of our knowledge) do not even know how to prove 2-dimensional
cosystolic or coboundary expansion for any (sparse) explicit complexes, and only know a handful of examples
of complexes satisfying these conditions in 1 dimension. This motivates the current study, wherein we give
new methods for proving and examples of complexes satisfying these conditions.

Coset complexes. Coset complexes are a well-studied way to build simplicial complexes from algebraic
structures; they were first studied by Lannér [Lan50].

For a finite group G and a finite set A, a A-indexed subgroup family H is a collection of subgroups
(Hx < G)xen-
Definition 1.3. Let G be a finite group and H = (Hy < G)acp a A-indexed subgroup family. The coset
complexr €€(G;H) is the following (|A| — 1)-dimensional simplicial complex:

e The vertices are partitioned into |A| types, and the type-A vertices (for A € A) are elements of G/Hj,
i.e., (left) cosets of Hy in G.

e A tuple of cosets (Cy)rea, where Cy has type A, forms a facet iff the mutual intersection of cosets
Mxca Cx is nonempty, or equivalently there exists g € G such that Cy = gH) for every A € A.

e The distribution on facets 7,4 is uniform.

It is not hard to check that a set of i + 1 cosets Cy,...,C; of types A, ..., \;, respectively (Ao, ..., \; all
distinct), forms a i-face iff ();_, C¢ # 0, or equivalently there exists g € G such that Cy = gH,, for every
0 € i]. O
Coset complexes have several nice properties. Firstly, they are partite: Facets have exactly one each vertex
of each type. Secondly, they are highly symmetric: In particular, they satisfy a useful technical condition
called “admitting a group acting transitively on facets” (in particular, this group is G). Thirdly, topological
properties of a complex (like its connectivity and expansion) are intimately related to the structure of the
group G vis-a-vis its designated subgroups. For instance, we make the following definition:
Definition 1.4. Let [JH denote the union of the subgroups H) (regarded as a subset of G). A word of
length € over H is a sequence of elements, denoted (go) - - - (ge—1), with each g; € |JH. (Here, the notation
(-) is used to emphasize that the length-1 word (z) is formally different than the subgroup element x itself.)
The inverse of a word w = (go) -+ (go—1) is the word w™ = (g;"}) -+ (g5 '). The concatenation of two
words w = (go) -+ (g¢—1) and w’ = (g) - -~ {gj,_1) is the word ww’ := (go) - - - (9e-1){(90) - (Fpr—1)- 0
Definition 1.5. The evaluation of a word w = {(go) - {(ge—1), denoted eval(w), is the ordered product
go- -+ ge—1 € G. We have eval(w™!) = (eval(w))~! and eval(ww’) = eval(w)eval(w’). O

Proposition 1.6 (e.g., [HS24; KO21]). Let G be a finite group and H = (Hx < G)rca an indexed subgroup
family. Then:

e Qualitative bound: €€(G;H) is 0-connected iff every element in G can be written as the evaluation of
some (finite-length) word over H.

e Quantitative bound: If every element in G can be written as the evaluation of a length-(< Ry) word
over H. then the 1-skeleton of €€(G;H) has diameter at most Ry.



As observed by [KO21], this quantitative bound can already be combined with the well-known fact [BS92;
Chu96] that a symmetric graph with diameter Ry has edge expansion (at least) ﬁ to get 0-coboundary
expansion (a.k.a. edge expansion) bounds for coset complexes. As we shall see in the next subsection,

algebraic conditions also imply tautness and therefore 1-coboundary expansion in coset complexes.

1.2 Main theorem: The relative Dehn method

The main conceptual contribution of our work is introducing a new tool, which we term the relative Dehn
method, for proving coboundary expansion of coset complexes. This method builds on a prior tool due
to [KO21] which, by contrast, we term the absolute Dehn method. (See also Appendix C of this paper,
and Theorem C.23 therein, for a restatement and reproof of the absolute Dehn method with coefficients in
arbitrary groups and with mildly improved quantitative parameters.)

One important fact about the absolute Dehn method [KO21] is that it is agnostic to the coefficient
group I'. That is, when the method applies to a complex X, it implies homological 1-connectedness and
coboundary expansion of X over every I'.? In contrast, our relative Dehn method is aware of the coefficient
group I': It can be used to prove homological 1-connectedness and coboundary expansion of X over I' even
when X is not homologically 1-connected over other groups I'V. Hence, our relative Dehn method can handle
some complexes which the absolute Dehn method of [KO21] cannot. One such example, which is the primary
motivation for and application of our work, is the Bs-type coset complex of [OP22], which we describe in
the following subsection.

Just as Proposition 1.6 above relates 0-connectedness and edge expansion with simple group-theoretic
properties, the absolute and relative Dehn methods relate 1-connectedness and 1-coboundary expansion with
group-theoretic properties. To state these conditions, we need some additional algebraic definitions. In this
subsection, we fix a group G, an index set A, and an indexed subgroup family H = (H) < G)xea.

Definition 1.7. We define an equivalence relation ~ on words over H by specifying that v ~ u if v is a
cyclic shift of either u or u~!, where (as expected) u~! denotes the word formed by reversing u and replacing
each symbol with the symbol for its inverse in G. (The semantics of v ~u is “v =1 iff u = 17.) O

Definition 1.8 (Subgroup relators). A word w = (xg)---(x¢—1) over H is a relator if its evaluation is 1
in G. We let R, denote the set of all relators of length at most £. An equation over H is a string “y = 27,
where y, z are words over  and yz~! is a relator; we identify the equation with this relator. %

Definition 1.9 (Derivations). A relator x is derived from a relator y via relator r if (for some words
P, q,u, v over H),
r~pouoq, z~powvogq, “u=v' ~r. (1.10)

In other words, up to equivalences, = can be obtained from y by substitution of an equation equivalent to 7.
Note that it is equivalent to reverse the derivation, i.e., to say that y is derived from z via r. %

Definition 1.11 (Derivation length). Let w be a relator over H and R a set of relators. We write area(w; R)
for the least number of derivation steps, via relators from R, that it takes to reduce w to the word 1. (Or,
we write area(w; R) = oo if this is not possible.) If w ~ “ax = y”, we also write this as area(z = y; R), and
refer to it as the least number of steps required to derive “z = 3’ via R. O

This function area(w;R) is essentially the same as, though not quantitatively identical to, the Dehn
function which is a widely studied measure of complexity in combinatorial group theory (see, e.g., [Bri02;
Ril17] and Remarks 3.23 and 3.24 below).

The group-theoretic hypothesis for our relative Dehn method, and also for the absolute Dehn method
of [KO21], concerns bounds on area(w; R) for specific sets of relators R. For our relative Dehn method, given
a commutative ring I and parameters ¢,t € N, we define a certain set of relators, called the t-fillable relators
over I' and denoted R, +(AL) C Ry (for a given length ¢). These are relations which have “area” at most ¢
in a certain sense. Formally defining ¢-fillability requires a bit more setup, which we defer to Definition 3.20
below, but we can now state our main theorem modulo this definition:

3[KO21] does not explicitly claim expansion over every T, only over Zz, but their proof bounds the “spherical filling number”
using the Dehn function, and in turn, their proof of coboundary expansion from bounds on the spherical filling number works
over every I'. See Appendix C.



Theorem 1.12 (Relative Dehn method). Let I' be any commutative ring and consider the d-dimensional
coset complex €C(G;H). Suppose that there exist Ro,l,t,6 € N such that:

1. every element in G can be written as the evaluation of a length-(< Ry) word over H.
2. every w € Raopy41 satisfies area(w; Ry (Ak)) < 6.

Then €C(G;H) has diameter at most Ry and is (2Ry+1, O((t+£)0))-homologically taut over T, and therefore
has 1-coboundary expansion at least Q(ﬁ) over I

In contrast, the absolute Dehn method of Kaufman and Oppenheim [KO21] uses a different set of relators
Rgommon:

Definition 1.13. R{™™°" is the set of relators (go) - - - (ger—1) (¢ < ¢) such that every g; € H) for a single
common subgroup A € A. O

Note that RF*™"°" is not defined with respect to I'. Once the proper definition of fillability is given, it
will be easy to check that R¢e™mon C R, o(AL) (for every ¢ € N and commutative ring T'). The absolute
Dehn method hypothesizes a bound on area(w; R®™™°") for every w € Rap,+1 and concludes coboundary
expansion bounds even for I' being a nonabelian group. Hence, the absolute Dehn method has a strictly
stronger conclusion at the cost of a strictly stronger hypothesis.

Remark 1.14. There is a stronger notion of 1-connectedness, called simple connectedness; if a complex X
is simply connected, then it is homologically 1-connected over every coefficient group I' (including nonabelian
groups). Though we will not need its definition in this paper, we remark that simple connectedness may
be regarded as a “homotopy” variant of (homological) 1-connectedness. A corollary of the absolute Dehn
method is that if area(w; R{e™™") is finite for every w € Rogy+1, then €€(G;H) is simply connected. This
“qualitative” implication predates the absolute Dehn method of [KO21] itself; it has been known at least
since the work of Lannér [Lan50] (see also [Bunb2; Gar79; AH93]). O

Since Rgemmon C Ry (Ak), the relative Dehn method quantitatively recovers the absolute Dehn method
over all commutative rings I'.* (That is, if all relators of length at most 2Ry + 1 are derivable from Ryommon
in at most J steps, then they are certainly derivable from Ry o(AL) in at most § steps for every I'.) However,
we note that the absolute Dehn method also applies when T' is not a commutative ring.

We remark that the technical tools involved in the proofs of the two methods do not seem very different.
Our main contribution is that the relative Dehn method is a viable and conceptually distinct route for
proving coboundary expansion for interesting complexes (such as the “ Bs-type coset complex” of [OP22], see
the following subsection) where the absolute Dehn method provably fails.

We now give some intuition for the relative Dehn method, and for the related notion of fillability. There
is an easy-to-describe “correspondence” between loops in a coset complex €€(G;H) and words over H.> In
particular, Ry ¢(AL) is precisely the set of relators of length at most ¢ for which the corresponding loops
have area at most ¢ over I'. Thus, by the cones method [Grol0; KO21], to prove coboundary expansion
Q(1/Ry) in a coset complex, it suffices to show that Ror,+1 € Rory+1,r, (Ak), i-e., all relations of length at
most 2Ry + 1 have area at most Ry over I'. The relative Dehn method lets us bootstrap and get area bounds
for all relations of a longer length (2Ro + 1) by algebraically deriving all such relations from fillable relations
of a shorter length ().

To apply the relative Dehn method, one essentially needs to complete two tasks:

1. Establish that there are “useful” relators in the set Ry (AL).
2. Algebraically derive all relators of length at most 2Rg + 1 from Ry (AL).

The second task is a completely group-theoretic problem. In the As-type case, it was solved by Kaufman
and Oppenheim for the As-type case in [KO21]; in the Bs-type case, it was solved in an earlier version of this

4See Appendix C, where we give a mildly quantitatively improved reproof of the absolute Dehn method which closely mirrors
our proof of the relative Dehn method.

5We put correspondence in quotation marks, because it is not actually bijective: one loop corresponds to many relators
and one relator corresponds to many loops. However, the correspondence is bijective on equivalence classes modulo some
easy-to-define equivalence relations.



work. This solution was quite long and mechanical, and it is omitted from the current manuscript because
it was subsequently formalized in [WBCS25].

For the first task, given that we are applying the relative Dehn method and not the absolute Dehn
method, we will typically be in a situation where the relators in Rj°™™°" are not enough to derive all of
R2ry+1. For the Bs-type case described in the following subsection, we get additional fillable relations via
“lifting” from a small, fixed-size base complex, for which we check fillability using a computer.

1.3 Application: Bs;-type coset complexes

The motivating application for our relative Dehn method (Theorem 1.12) is a family of coset complexes,
called Chevalley complexes [KO18; OP22], and more specifically, the “Bs-type coset complex” of [OP22].
We defer defining these complexes formally until §4, but we now give some intuition for them and describe
our result for them.

Remark 1.15. The original motivation for this work was to understand whether the Bs-type complex
itself was a cosystolic expander over all (even nonabelian) groups I'. This is one of the properties required of
simplicial complexes for downstream applications in agreement testing and PCPs [BM24; DD24b; DDL24;
BLM24; BMVY25]. Ultimately, our investigations showed that the Bs-type complex appears not to have
this property, unlike the As-type complex, which was analyzed in [KO21] using the absolute Dehn method.
We developed the relative Dehn method in order to still prove some cosystolic expansion bounds for the
Bs-type, even if not as strong as would be needed for these downstream applications.

While we frame the current work mostly around this new method, a substantial reason we sought to
study the Bs-type complex was to diversify the landscape of cosystolic-expanding complexes. Very roughly,
[DDL24; BLM24] had to study certain “C-type” building complexes [CL25], instead of the existing “ A-type”
ones, in order to achieve requisite properties for downstream applications. We hoped that studying the
B- (and C-)type coset complexes might therefore prove fruitful towards finding additional constructions of
agreement testers and PCPs. This point may now be moot since requisite properties for the A-type coset
complexes were subsequently established by Kaufman, Oppenheim, and Weinberger [KOW25]. O

Recall that to instantiate coset complexes, one needs groups admitting indexed families of subgroups.
One natural choice turns out to be the Chevalley groups, which are matrix groups over finite fields. These
groups have a lot of structure which is useful for building coset complexes and analyzing their HDX properties,
including: they have natural and highly structured subgroups; they can be described succinctly via generators
and relations (i.e., via presentations); and their spectral expansion has an elementary analysis [HS24; OP22].
The “Ag-type” Chevalley group used in [KO18] essentially corresponds to (d 4+ 1) x (d + 1) determinant-1
matrices over a finite field (i.e., SLg4+1(Fy)) while the “Bg-type” Chevalley group used in [OP22]|, which we
study in this paper, essentially corresponds to (2d 4+ 1) x (2d + 1) determinant-1 “orthogonal” matrices over
a finite field (i.e., SO24+1(F,)). See [HS24| for an excellent overview of properties of coset complexes and
the specific instantiation with SLy1q(Fy).

Remark 1.16. We emphasize that we now typically have two finite fields to keep in mind: (1) the field
used to define the Chevalley group, and (2) the field over which we want to calculate coboundary expansion
of the corresponding complex. These fields may have different sizes. O
Now, we recall some more details from [OP22] of the simplicial complex in question:
Definition 1.17 (The “Bs-type coset complex”). Let F, be a field of order ¢ and odd characteristic.® Let
F be an extension of degree m > 6, so |ﬁ| =n = ¢". Let Bg(ﬁ) denote the universal Bs-type Chevalley
group” over F, of cardinality N = n®(n® — 1)(n* — 1)(n2 — 1) ~ n2l. Let H,, Hg, Hy, H, C Bs(F)
be the four subgroups defined in [OP22] (and in Definition 4.23 in this paper) of cardinality ¢?°, ¢*°, ¢3!,
¢*' (respectively), and let B2(m) be the associated 3-dimensional coset complex, acted upon by Bs(F) in
a tetrahedron-transitive way. This complex is on V = (2¢72° + 2¢ 731N ~ 2¢?'™~20 vertices, with each
vertex in ©(g3!) tetrahedra. O

6 In [OP22], the “base field” was always described as having prime order p. But at no point was this ever required; inspection
of the paper shows that everything is just the same (after replacing “p” by “¢”) for non-prime-order base fields Fy (of characteristic
not 2). Also, though that paper’s statements required characteristic at least 5, they noted that characteristic 3 was also fine
for all types other than “G2”.

7Bs3(F) is also known as Q7 (F), the commutator subgroup of O7(F), the group of 7 x 7 orthogonal matrices over F.



Remark 1.18. The smallest possible expanding instantiation of the above complex (¢ = 19, m = 6) has
V > 2459 (Similar astronomical numbers hold for all known HDX families.) This illustrates the importance
of strong explicitness; we can work with that HDX implicitly, computing incidences in time “poly(450)”. ¢

By applying our relative Dehn method, we show that the Bs-type simplicial complexes are cosystolic
expanders:

Theorem 1.19 (Main application). If ¢ is a sufficiently large power of 5, the 2-dimensional simplicial
complezes %2(m) have 1-cosystolic expansion at least (€g, o) over Zo and Zs, where €g, g > 0 are universal
constants.

(See Definition 2.27 below for the formal definition of cosystolic expansion which we use.)

Just as in [KO21] for the As-type case, by well-known tools [Grol0; DKWI18|, Theorem 1.19 implies
topological expansion of the complexes %2(m): If the graph-with-triangles %2(7)1) is (continuously) drawn in
the plane, no matter how curvily, there will be a point in R? contained in a constant fraction of its triangles.

Kaufman and Oppenheim [KO21] proved similar theorems for the family of “ A3-type coset complexes over
F,” they had earlier constructed [KO18] using their absolute Dehn method, and which we denote (A3(m))m>4.
(Because of the power of the absolute Dehn method, their theorems held for ¢ being any sufficiently large
prime and for homology over any finite field, or indeed, any even nonabelian group. We emphasize, again,
that the absolute Dehn method cannot apply to the Bs-type complexes.)

Remark 1.20. Let us give a small bit of flavor of the work of [KO21]. The very first (of many) interesting
group-theoretic tasks Kaufman and Oppenheim needed to solve, in order to prove cosystolic expansion of
2A3(m), was the following:

Fix a prime p, and consider the group with generators a, 8, 7, A, and u, each of order p.
Assume that o and v commute with all other generators except 3, that afa~'5~! = A, and that
ByB~ 1yt = . Must A and g commute, i.e., ApA " =t =17

Luckily for them, this was proven for p = 3,5,7,11,13 in [Kir78; Eve78] and for all odd p in [BDO1];®
indeed, extending the [BDO01] proof to generalized settings was the main component of their group-theoretic
work. For our tackling of the Bj case, there is a highly analogous but more complex problem that — if it
could be proven — would likely lead to a proof of coboundary expansion over all ' using the absolute Dehn
method. Unfortunately, it appears this analogue is false, and therefore the absolute Dehn method cannot be
used!” See Appendix A for a simple version of the [BDO1| proof and more discussion. On the other hand,
despite being unable to show the Bz analogue of “AuA~1 =1 = 17, we were able to use computer-assistance to
verify that when p = 5, the “corresponding loop” is “homologically” fillable. This is what led us to develop the
relative Dehn method, unlocking the ability to combine computer-discovered fillings with human-discovered
group-theoretic proofs. %

Beyond our new relative Dehn method, several other ingredients go into the proof of Theorem 1.19:

1. Standard tools also used in [KO21] in the A3 case, namely, local-to-global theorems for cosystolic
expansion [KKL16; EK16; DD24a| and the cones method for relating coboundary expansion with
homology fillings [Grol0; LMM16; KM19; KO21],

2. Bounds on the spectral expansion of the Bs-type coset complexes from [OP22] (analogous to results
from [KO18] used by [KO21] in the A3z case),

3. Computer calculations of “Betti numbers” of (links in) the Bs-type coset complexes over various finite
fields, in order to check homological 1-connectedness over these fields,

4. “Lifting” tools to map fillings in “small” coset complexes to fillings in “large” coset complexes,

8Kaufman and Oppenheim [KO21] state that p may be a prime power, but this is not completely clear because the Biss-
Dasgupta result holds for the ring Z/qZ, but is different for the ring Fq.

9We verified that it is false when p = 3, 5, or 7, by showing that the corresponding coset complexes are not simply connected.
We conjecture that this is the case for all p (see Conjecture 6.2 below). If our conjecture is wrong, our group-theoretic derivations
could immediately be used to apply the absolute Dehn method.



5. Various group-theoretic derivations, which turn out to be quite elaborate, and were formalized in [WBCS25].

Remark 1.21. One interesting byproduct of the “lifting” technology we develop is that in the A3 case, we
can apply the absolute Dehn method to 912 (m) for q a (sufficiently large) power of 2,5,7,11,13, using the
results of [Kir78; Eve78] in place of [BDO1]. O

1.4 Related work

After the initial version of our work appeared, Wang, Bhoja, Codel, and Singer [WBCS25] formalized the
group-theoretic Theorem 5.5 in the Lean 4 theorem prover. In light of this, we have chosen to omit the
original (very long) proof of Theorem 5.5 from this manuscript.

Concurrently with and independent of this paper, Kaufman, Oppenheim, and Weinberger [KOW25]

proved that the global 1-cohomology vanishes in the A,-type coset complexes 7 (m) of Kaufman and Op-
penheim [KO18] (even over arbitrary nonabelian coefficients). Combined with the proof from [KO21] of
cosystolic expansion, this shows that ng(m) is a coboundary expander.

1.5 OQOutline

In §2, we define simplicial complexes, relevant notions of expansion, and (general) coset complexes, and
cite some generic tools for proving expansion (i.e., local-to-global methods for cosystolic expansion [EK16;
DD24a|, and the cones method for coboundary expansion [Grol0; KO21]). In §3, we present our new tools
for proving coboundary expansion of coset complexes (over arbitrary commutative coefficient rings), thereby
establishing the relative Dehn method (Theorem 1.12). In §4, we then formally define Chevalley complexes
and use tools from §3 to connect certain algebraic and computational conditions to expansion of these
complexes. In §5, we use the aforementioned tools to prove our main application theorem (Theorem 1.19)
regarding the Bs-type complexes of [OP22]. In §6, we discuss computational aspects of the proof. We
emphasize that the tools for coboundary expansion in §3 work for all coset complexes; that section may be
read independently of the latter sections and the methods may be of independent interest.

In Appendix A, we discuss the proof of simple connectivity in the As-type case due to [BD01; KO21]

and reflect on why it does not appear to extend to the Bs-type case. In Appendix B, we reprove the cones
method of [KO21] for general coefficient rings. In Appendix D, we formally define the As- and Bs-type
groups which we discuss in the paper.

2 Preliminaries

We use the convention [n] := {0,...,n}, so that |[n]| = n + 1. (We warn the reader that this convention is
nonstandard, since usually 0 is excluded, but it makes some notations significantly more convenient.) “Ring”
means a commutative ring with identity. Without qualification, a “group” means a (possibly nonabelian)
group, written multiplicatively.

2.1 Group theory

We denote group identity elements as 1, and define the commutator of two elements in a group z,y € G as:

[2,y) = zya 'y~ (2.1)

(We can similarly define the commutator of two words over H for H an indexed subgroup family in G.)
Observe that zy = yx (i.e., z and y commute) iff [x,y] = 1.

“Cosets” in this paper are always left cosets. For a group G and a subgroup H < G, G/H is the set of

left cosets {gH : g € G}. Here are some trivial but useful facts to keep in mind:

Fact 2.2. Let G be a group and H < G a subgroup.

e Forge G and h € H, we have gH = ghH.
e For every g1,92 € G, gl_lgg € H iff g1 € goH iff g1 H = goH.
e For every g1,92 € G, gl_lgg & Hiff 1 € goH iff o H N goH = 0.



2.2 Simplicial complexes

Recall our definition of simplicial complexes (Definition 1.1) as given by vertices V', facets X(d) (size-(d + 1)
subsets of V), and a weighted distribution 74 on facets. Here, we give several more notations and definitions
regarding simplicial complexes which we will use in this paper.

Definition 2.3. For two vertices u,v € X(0), a walk of length L > 0 from u to v in X is a sequence
of vertices written W = (up = u) — w3 — us — -+ — (uy, = v) such that for every 0 < ¢ < L — 1,
{ug,ues1} € X(0) UX(1) (i.e., either up = upi1, or uy # ugp1 and {ug, upp1} € X(1) is an edge).'® We also
use |W| for the length of the walk. If for every ¢, uy # upi1, we say W is proper. Given a walk W from u to
v and a walk W’ from v to w, W o W' is the concatenated walk (from u to w), and |W o W'| = |W|+ |[W/|.
Given a walk W from u to v, W' is the reversed walk (from v to u).

Definition 2.4. A walk from u to u is called a loop at u. (u may be called the base point of the loop.)
Reversing a loop or concatenating two loops also results in a loop. O

Notation 2.5. If we don’t specify a weighting for d-dimensional complex X, then by default 7 is assumed
to be the uniform distribution on X(d). O

Definition 2.6. For X a d-dimensional simplicial complex and o € X(j), the link of o is the (d — j — 1)-
dimensional simplicial complex with facets X,(d —j — 1) == {7\ o : 7 € X(d), 7 2 o}. If X has weighting
m, the link X, becomes a weighted complex (X,,77) under the natural weighting induced by 7, in which
77 (7y) is proportional to 7w(o U~). O
Definition 2.7. A family (X,,) of d-dimensional complexes is of bounded degree if there is some D such
that every vertex link (X,,), (meaning |o| = 1) has cardinality at most D. O

Definition 2.8. For X a d-dimensional complex, the set of oriented j-faces is the set
i(]) = {(0’07 . ,Jj) : {O'(], - 70’j} € :{(])}

If P: [j] — [j] is a permutation and o = (09,...,0;) € %(5), then we define P(c) = (Tp(0),---»0pP3)) €

X(j). If X is weighted with facet distribution 7y, we naturally get a distribution 7; on oriented j-faces X(j)
by sampling a j-face from 7; and orienting it uniformly randomly.

We identify X(0) and £(0) (i.e., vertices need not be oriented).

Definition 2.9. Let X be a d-dimensional (weighted) simplicial complex with uniform weighting on the
facets. An automorphism of X is a bijection ¢ : X(0) — X(0) such that the image of every facet is also a
facet, i.e., for every o € X(d), ¢(c) € X(d). We say X is strongly symmetric if for all facets 0,0’ € X(d),
there exists an automorphism ¢ of X such that ¢(c) = ¢’. The automorphisms of X form a group, denoted
Aut(X), under composition. O

<

Fact 2.10. When X = €&(G;H) is a coset complex and g € G, the function ¢, : X(0) — X(0) defined by
wq(g'Hy) = (9¢9')Hx is an automorphism of X, which we call translation by g.

2.2.1 (Co)cycles and (co)boundaries

Let I" be a fixed ring.!!

Definition 2.11. For X a d-dimensional complex and —1 < j < d, a j-chain f in X is a function f : %(]) —
I satisfying the antisymmetry property f(o) = sign(P) - f(P(0)) for every permutation P : [j] — [j].'?> The
set CJ(X;T) of all j-chains forms an (abelian) group under (pointwise) addition. O
Note that a j-chain f is completely determined by specifying f’s value on one orientation of every j-face
of X. Hence, as a group C?(X;T) is isomorphic to the |X(j)|-fold direct sum of I' (though the isomorphism
depends on choice of orientations).
Walks and loops are simple examples of 1-chains:

10In the context of simplicial complexes, this would usually be called a walk in the “1-skeleton” of the complex. However, we
will not need any other notion of walks in this paper.

HWe note that 1-cohomology can even be defined over nonabelian groups; see Appendix C.2.

12 Arguably this should be called a j-cochain, but since our complexes are finite there is no need to distinguish.



Definition 2.12. Let u,v € X(0) and T" be a ring. Any (possibly improper) walk W = (ug = u) = -+ —
(ur =) from u to v in X gives rise to a 1-chain [Wlr =3/, 20, | Lueuesr) € cL(x;I). O

Given an oriented j-face 0 = (0p,...,0;) and 0 < i < j, define the oriented (j — 1)-face o; =
(0’07 303150441y -+« O'j).

d, the (j — 1)-coboundary operator 67~ :

Definition 2.13. For X a d-dimensional complex and 0 < j <
)-chains f by

CI=Y(x;T) — CI(X;T) is a homomorphism defined on (5 — 1

J

(1 ) (0) = (=1)'f(o)

i=0
for every o € X(j). _'Dually, the j-boundary operator 9; : C7(X;T) — C7~1(X;I') is the homomorphism
defined by: For o € X(j), g € I, and 12 the 1-chain sending o to g and all other faces to 0,

J
0,15 =Y (~1)114, ..
i=0
O

These satisfy that 677167 = 9;0;,_1 = 0. Given a fixed choice of orientations for (j —1)- and j-faces, 671
and 0; can be represented as {0, +1, —1}-valued matrices (without regard to the choice of T').

Remark 2.14. If I' = Z,, since 1 = —1, the antisymmetry property of chains becomes the symmetry
property f(o) = f(P(c)). Hence, chains over Zs can more simply be viewed as functions X(j) — Zs, or
equivalently, as (indicators of) sets of j-faces. Moreover, the coboundary operator can be written more
simply as /"1 f(0) = > -5 f (7). This recovers the 1-dimensional definitions we gave in §1.1. %
Definition 2.15. A j-cycle is a j-chain f € C7(X;T) such that 9;f = 0. In particular, f € C*(X;T) is a
1-cycle iff for every vertex u € X(0),

Z flu,v) =0.13

vi(u,0)€X(1)
Over any I', a walk W from u to v has 1-boundary 04 [W]r =1, — 1,, and in particular, if W is a loop at «
then [W]r is a 1-cycle. The j-cycles form a subgroup Z;(X;T") :=ker 9; C C?(X;T). O
Similarly:
Definition 2.16. The group of j-boundaries is B;(X;T') :==im8;_1 C C¥(X;T). If f is a 1-boundary and
T is a 2-chain such that 8,7 = f, then we say T is a I-filling of f. Since 677! = 0, the j-boundaries are
always “trivially” j-cycles, i.e., B;(X;T') C Z;(X;T). O
Dually:

Definition 2.17. A j-cocycle is a j-chain f € CJ(X;T) such that 6/ f = 0. In particular, a 1-cochain
f € CY(X;T) satisfies that for every oriented triangle (u,v,w) € i(?),

flu,v) + fv,w) + f(w,u) = 0.

The j-cocycles form a subgroup Z7(X;T') := ker§’ C CJ(X;T). Similarly, the group of j-coboundaries is
BI(X;T) =imd’~t C ZJ(X;T) C CI(X;T). O
Definition 2.18. The j-th cohomology group (over T') is the quotient group H’ (X;T) := Z7(X;T) /B’ (X;T).
Dually, the j-th homology group is the quotient group H,;(X%;T") = Z;(%;T')/B;(%;T). The complex X is
homologically j-connected over I' (or “has vanishing j-homology over I'”) if any if the equivalent conditions
Bi(%;T)=ZI(%;T), H(X;T) =0, B;(X;T) = Z;(X;T), or H;(X;T) = 0 hold. %
Definition 2.19. When T is a field, C7(X;T), Z7(X;T), B/(X;T'), H(X;T') and their dual (homology)
versions are all vector spaces over I'. Similarly, 67 and 0; are linear maps. In this case, we define the j-th
Betti number of X over I' as

B;(%;T) = dim(H’ (%;T); T) = dim(H; (%;T); 7).
In particular, X is homologically j-connected over I iff 8;(X;T) = 0. O

131n spirit, such f may be thought of as a “net-zero flow”, though f’s values are in I', not necessarily real numbers.
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Fact 2.20. The following conditions are equivalent:
1. X is 0-connected,
2. X 1s 0-connected over every I', and
3. X is 0-connected over some I' (with || > 2).
When X is 0-connected, we define u(X) = |%(1)| — |X(0)| + 1 as the l-skeletal cyclomatic number of X.
This gives us the following characterization of homological 1-connectivity:

Fact 2.21. If X is O-connected, then 31(X;T) = pu(X) — rank(6;T'). Hence, X is homologically 1-connected
over T' iff rank(64;T') = pu(X).

Proof. By definition, 31(X;T) = |X(1)|— (rank(8°; T')+rank(6;T)). By O-connectivity, rank(5%;T") = |X(0)|—
1. This gives the required bound. O

Remark 2.22. We stress that (at least when T' is F,, or Z), homological j-connectivity of an explicit
simplicial complex is checkable in polynomial time, via computing the ranks of the boundary operators 67!
and 7. In contrast, checking simple connectivity of an explicit simplicial complex — the stronger notion
of connectivity established by the absolute Dehn method of [KO21] — is equivalent to checking triviality
of a finitely presented group, which is undecidable [Adi57; Rab58|. (In particular, given an explicit finitely
presented group, one can compute an explicit simplicial complex which is simply connected iff the group is
trivial, e.g., the second barycentric subdivision of the presentation complex.) %

2.3 Expansion definitions

In this section on expansion properties, (X, 7) will always denote a weighted d-dimensional simplicial com-
plex.

2.3.1 Cocycle, coboundary, and cosystolic expansion

In this section, fix a ring I'.

Definition 2.23. For (¥, 7) a weighted d-dimensional complex, the distance between two j-chains f and f’
is defined to be

dist(f. )= Pr [f(0) # 1'(@)].

The weight of a j-chain is wt(f) := dist(f, 0). O
Note that we need not specify an orientation for o since f(o) = f'(o) iff f(P(o)) = f'(P(o)) by
antisymmetry.

Definition 2.24. Suppose that whenever f is a j-chain over I' with dist(f, Z/(X;T)) > v, it holds that
dist(6,0) > €-v. Then we say that X has j-cocycle expansion (at least) € over T', and we write b7 (X;T") for
the least possible such e. If the “j” is omitted, we mean that the condition holds for all 0 < j < d. O

Definition 2.25. We define the j-cosystole to be
s7(%;T) :== min{dist(f,0) : b € Z7(%;T) \ B (%;T)}, (2.26)

with the convention s7(X;T) = 1 if the j-th cohomology vanishes over T O

Definition 2.27. Suppose the j-cocycle expansion over I satisfies A7 (X;T) > e. If, moreover, s/ (X;T) > u,
we say that X has j-cosystolic expansion (at least) (e, ) over I'. If the j-th cohomology in fact vanishes, X
is said to have j-coboundary expansion (at least) e. If the “j” is omitted, we mean that the condition holds
forall 0 < j < d. O
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2.3.2 Spectral expansion

Definition 2.28. Let 0 € X(j), j < d—2, and let G, = (V, E,m) be the 1-skeleton of the link X,. Then
if A, denotes the (m1-weighted) adjacency matrix for G, and D, denotes the diagonal degree matrix (with
vth diagonal entry 2mo({v})), we write W, = D1 A, for the standard random walk matriz of X, (which has
invariant distribution ). We will also write A2(%,) for the second-largest eigenvalue of W,,.

O
Definition 2.29. For j < d—1, we say that X has j-spectral'* expansion parameter at most v if A\a(X,) < 7
for all |o| = j. If the “j” is omitted, we mean that the condition holds for all j < d — 2. %

Ballmann and Swiatkowski [BS97] showed the following:

Theorem 2.30. Suppose X has 1-spectral expansion parameter v, and also that (the 1-skeleton of) X is
connected. Then Aa(Xy) < ﬁ; i.e., the 0-spectral expansion parameter of X is at most ﬁ

Using this inductively, one can establish [Oppl18] the Trickling Down theorem:

Theorem 2.31. Assume (the 1-skeleton of) X, is connected for all j-faces o, j < d—1. If X has (d — 1)-
spectral expansion parameter -y, then it has j-spectral expansion parameter at most m.

The utility of this theorem is that (under the mild constraint of connectivity) one can show global spectral
expansion just by verifying spectral expansion in the local link graphs of the (d — 2)-dimensional faces.

2.4 Cosystolic expansion from local conditions

A sequence of works [KKL16; EK16; DD24a] gave results showing that cosystolic expansion — and hence also
topological expansion — follows from “local” considerations. The following version is taken from [DD24a]:

Theorem 2.32 ([DD24a, Thm. 1.2]). For any 0 < 8 < % and d € N, there are v,€, 4 > 0 such that the
following holds. Let T' be a group and X a d-dimensional simplicial complex. Suppose that for all j-faces o,
0<j<d—1, the complexr X, has coboundary expansion at least B over I'. Suppose also that X has spectral
expansion parameter at most v. Then X has j-cosystolic expansion at least (e, ) for all j < d—1 (though
not necessarily for j =d—1).

Suppose we wish to apply this theorem in the case d = 3. In terms of coboundary expansion, we would
need to verify:

1. Each vertex-link has 1-coboundary expansion at least 3.
2. Each vertex-link has 0-coboundary expansion at least 3.
3. Each edge-link has 0-coboundary expansion at least f.

But the second and third conditions here are essentially superfluous, since X is already assumed to be an
excellent spectral expander. More precisely, by the “easy direction” of Cheeger’s inequality, the O-coboundary
expansion of the vertex- and edge-links is at least % — %fy, which exceeds 8 provided + is small enough. Thus
only the first condition above is essential. Moreover, by the Trickling Down theorem, we only need to verify
spectral expansion for the edge-links. Putting this together (exactly as was done in [KO21]), we conclude
the following;:

Theorem 2.33 (Local-to-global + Trickling Down). For any 0 < 8 < %, there exists v > 0 such that the
following holds: Suppose that X is a connected 3-dimensional complex, where all vertez-links are connected,
and all edge-links have 0-spectral expansion parameter (i.e., second-largest eigenvalue) at most . Moreover,
let T' be any group, and assume that each vertex-link has coboundary expansion at least B over I'. Then X
has 1-cosystolic expansion at least (Q(B),Q(B)) over T.

14 Other authors would call this (j — 1)-local or (j — 1)-spectral expansion.
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2.5 Cones and fillings

The main effort is in developing a way to show good 1-coboundary expansion for certain 2-dimensional com-
plexes. One way to show this is to use the “random cones” method of Gromov [Grol0]. In turn, Kaufman and
Oppenheim [KO21] (following on ideas in [LMM16; KM19]) showed that in “strongly symmetric” complexes,
it suffices to upper-bound the “cone radius”. We state a version of their result which suffices for our purposes:

Definition 2.34. Let X be a d-dimensional simplicial complex (d > 2), I a ring, and L a loop in X. We
define the (“homology”) area of L (over T') as:

AH(L) = , min |supp(T")].
TeC(CE(GyH);T),
62T:[L]r
(We call such T a T-filling of L.) We write AL (L) = oo if there is no such T O

We outline some important properties of the function AL below in §3.1.

Definition 2.35. Let X be a d-dimensional simplicial complex (d > 2) and T" a ring. We say that X is
(Ro, R1)-homologically taut over T if for every proper loop L of length at most Ry, AL (L) < Ry. O
(This definition of tautness generalizes the hypothesis of the cones method in [KO21].)
Kaufman and Oppenheim’s theorem makes this quantitative for strongly symmetric complexes:

Theorem 2.36 (Cones method, generalizing [KO21, Thm. 3.8]). Let T be a ring and let X be a 2-dimensional
simplicial complex. Assume that X is strongly symmetric (and therefore mo is the uniform distribution
on X(2)). If Ry is the diameter of X and X is (2Ry + 1, R1)-homologically taut over I, then X has 1-
coboundary expansion at least 1/Ry over T'.

Since this theorem is not stated for general rings I'" in [KO21|, we reprove it in our Appendix B. (We
also reprove a “homotopy” version of it due to [DD24b], implying expansion over all nonabelian groups, in
Appendix C.3.)

2.6 Coset complexes

Let G be a group and H = (H) < G)xea a A-indexed subgroup family. We collect some elementary properties
of a coset complexes here (see, e.g., [Gar79] for proofs):

Proposition 2.37. The |A| — 1-dimensional coset complex €E(G;H) satisfies the following:

1. For every 0 < j < |A| — 1, the group G acts on €€(G;H) as automorphisms in a natural way: The
J-face {xHy,,...,xHy,} is mapped to the j-face {gvHy,,...,gxHy;}. This action is transitive on the
j-faces.

2. Let o be a j-face in CC(G;H); say o = {xHy,,...,xHy,} where Xo,...,\; € A are all distinct. Let
A= {Xo,..., \j}. Then writing Hyy = (ycp Hx (meaning G itself if A' = 0), the link of o is
isomorphic to the coset complex €€(HA/; (Ha N H,\),\EI\\A/).

3 The relative Dehn method

In this section, we develop technical notions in order to prove our relative Dehn method, Theorem 1.12.

3.1 Area function
We start by defining an abstract notion of “area functions” that captures the properties of the functions A{I
that we will use.

Definition 3.1. Let X be a simplicial complex. A backtracking loop at a vertex u € X(0) is a loop of the
form WoW =1 or Wo (v— v)o W™t where W is a walk from u to v (for some vertex v € X(0)). O

Definition 3.2 (Area function). Let X be a simplicial complex. A function A : {loops in X} — NU {o0}
is an area function if it satisfies the following axioms:
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Figure 1: Suppose w = (f\g) (f&) (f\z) (f\z) (f:) (f\:) € Fy is a lengthﬁ colored WOId with w(@) = 1 (equiva-
lently, xox122232425 = 1 € G). This figure depicts the corresponding cycle £(@w). The vertices are cosets;
note the alternative names given to each vertex (corresponding to different representatives of each vertex.).
The edges are labeled with elements “witnessing” the intersection of the cosets corresponding to the two

incident vertices.

1. Cyclic symmetry: It W is a walk from u to v and W’ from v to u, then A(W o W') = A(W' o W).
2. Reversal symmetry: For every loop L, A(L) = A(L71).

3. Translation symmetry: For every loop L and automorphism ¢ € Aut(X), A(¢L) = A(L).

4. Backtracking loops have no area: For every backtracking loop B, A(B) = 0.

5. Triangles have unit area: If {u,v,w} € X(2), then A((u = v = w — u)) = 1.

6. Subadditivity: Suppose W7 is a walk from u to v, Wy a walk from v to u, and L a loop at v. Then
A(WIOLOWQ) SA(L)+A(W10W2) <>

Proposition 3.3. For every ring I' and simplicial complex X, the area function AL defined in Definition 2.3/
satisfies the axioms in Definition 3.2.

Proof. Recall that for a loop L, AL (L) = min{|supp(T)| : 92T = [L]r}. Cyclic symmetry follows from the
fact that [W o W'lr = [W]r + [W’]r. Reversal symmetry follows from the fact that [L~1|p = —[L]r (and
O2(=T) = —9,T). Translation symmetry follows from the fact that [pL]r = ¢[L|r and 92(¢T) = ¢(92T).
The backtracking walk property follows from the fact that [W oW ~!p = [W]p +[W ~Yr = [W]r — [W]r = 0,
and similarly [Wo(v — v)oW ~!p = O since [(v — v)]r = 0 by definition. The unit area property follows from
the fact that 9o1(y v,w) = L(w,v) +1ww) + 1w = [(4,v,w)]r. Finally, subadditivity follows from the fact that
if 9T = [L]r and 9,T" = [L']r, then 0o (T +T") = [Lo L'l and |supp(T + T")| < |supp(T)| + |supp(7”)|. O

3.2 From colored words to loops

In this subsection, fix a finite group G, an indexed subgroup family H = (H) < G)aea, and consider the
corresponding coset complex €€(G;H). We also fix an area function A. Recall that for any g € G and
distinct pair of subgroup indices Ay # Aa € A, the vertices gH), and gH), form an edge in €€(G;H). Recall
also the definition of a loop in a simplicial complex (Definition 2.3) and how a loop can be interpreted as a
1-chain (Definition 2.12).

Definition 3.4. Think of each subgroup index A € A as a “color”, and for any = € H), we introduce the

symbol (2), called a “colored element”. A colored word is a sequence of the form (;\8) e (i‘j:i), where each

(i‘:) is a colored element. We regard this colored word as a coloring of the underlying word (xo) - - - (x¢—1)

over H. By definition, every word (zg) - - (z¢_1) over H admits at least one coloring (ig) e (iﬁ:) O
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(a) “Non-degenerate triangle” (b) “Partially degenerate triangle” (c) “Fully degenerate triangle” (one
(three distinct vertices). (two distinct vertices). distinct vertex).

Figure 2: The three possible types of walks of length-3, allowing vertices to coincide.

Definition 3.5. Let w = () - - (x4—1) be a word over H of length ¢ and @ = (AO) (Al) - (A"'*l) a coloring

o T Tyg—1
of w.. (We typically use a hat to denote a coloring of a word.) We associate to @ the following walk L£(w)
of length ¢ in €€(G;H):

]lH)\O — LL‘()IT[)\1 — (L‘():L‘ll’l,\2 — = X1 'LUg,QH)\Z_l — Lo " 'LL'[,LH)\O = evaI(w)H,\U, (36)
which is a loop iff w is a relator (i.e., eval(w) = 1). The walk £(@) is proper iff A\; # ;41 for every
0<i<{¢—1 (where \;:=)\g). O

Remark 3.7. Let us remark that in Equation (3.6), wherever we wrote xq---x;—1H),, we could have
equally well written xq - - - &;_12; Hy,; this is because x; € Hy,, so 2;Hy, = Hy, (cf. Fact 2.2). So for example,
the presence of the edge between zg---x;_1Hy, = xo---z;_12;H), and xo---x;H),,, in the skeleton of

CC(G;H) is “witnessed” by the element xq - - - ;. See Figure 1 for a visual depiction. O
Remark 3.8. Consideration of the above definition lets one easily conclude Proposition 1.6 from Proposi-
tion 2.37, that €€(G;H) is connected iff G is generated by the subgroups H iff eval is onto. O
Definition 3.9. When w is a relator and @ is a coloring thereof, we write A(@) == A(L(D)). O

We now give some simple facts about areas.
Fact 3.10. For any A € A, the length-1 word w = (])l\) has A(w) = 0.

Proof. L(@) is the self-loop at the vertex 1Hy; use the backtracking axiom. O
Fact 3.11. For any A1,A2 € A and s € Hy, N Hy,, the length-2 “recoloring” word w0 = (;1) (S/\;l) has
A(w) = 0.

Proof. L(w) is a length-2 closed walk; use the backtracking axiom. O

Fact 3.12. Let w = (xg) - (x¢_1) be a relator over H admitting a monochromatic coloring W, i.e., there
exists A\ € A such that xq,...,xzo_1 € Hy, and @ := ()‘)()‘) ( A ) Then A(w) = 0.

o/ \T1 Te—1
Proof. L(w) consists of ¢ self-loops at 1H; again, use the backtracking axiom. O

Fact 3.13. Let w = (xq) - (xg—1) be a relator over H. Then for every coloring W = (ig) (ii) e (ij:) of
w, A1) = A(D).

Proof. woxy - x;—1L(@7) = L(®), and hence £(@w ') is the reverse of L£(@); use the reversal symmetry
property. O

Fact 3.14. Let w = {(xg) - (we—1) be a relator over H. If w! = (2;) (;;E) (;jj) (ig) (;;j) is some
cyclic shift of W, then A(w?) = A(W).

Proof. L(@7) is a cyclic shift of £(@); use the cyclic symmetry property. O
See Figure 2 for a visual depiction of the following fact:

Fact 3.15. Let g € G and L = (gH)x,,gHx,,9H>,). Then A(w) < 1.
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’ $0$1$2y0H51 = Jfoxll‘gyoylHBl ’xoxlxgHBO = xoxlﬂ?gyoHBO

Figure 3: A “proof by picture” of Proposition 3.16. Let 7 = (ao) (‘”)(“2), Y= (’80) (’81)(’52)7 and Z =

To/ \x1/ \T2 Yo/ \y1 2
(ZZ) (1*) € Fy. Suppose also that eval(Zy) = 1 and eval(y) = eval(2). The goal is to reduce the problem
of filling £(7%) to filling £(Zy). The outer (rounded) hexagon is £(Zy) (compare Figure 1). We introduce
two new vertices in the middle of the hexagon and draw two triangles and two pentagons involving these
vertices. These four shapes add together to form the solid hexagon. The lower pentagon is the translation

(by eval(Z)) of L(yz~!) and the upper pentagon is £(72).

Proof. If g, A1, and Ao are not all distinct, L is either a triple self-loop or a backtracking edge plus a self
loop; in either case, L has area zero. Otherwise, {gH,, gHx,,9Hx,} is a bona fide triangle in X, i.e., an
element of X(2); consequently, L has area one. (See Figure 2 for a graphical depiction.) O

The following proposition is important; informally, it says that if “zy = 1” has a small filling, and “y = 2”
has a small filling, then we can deduce that “zz = 1” has a small filling.

Proposition 3.16. Let x, y, and z be words over H, and suppose that xy and yz~' are both relators
(so that xz is also a relator). Then for all colorings T, y, and Z of x, y, and z, respectively, N(zz) <
A@Y) + A1) + 2.

See Figure 3 for a graphical depiction of the proof.

Proof. We will assume z, y, and z all have length at least 1, as the case when one or more has length 0
is casier. Let @ = (@0}~ (@j-1), y = (o) (oo} and 2 = ()<~ (ze1), and & = () -+ (%0-2),
y= (53) (5::), and z = (Zg) (Zﬁ:) the respective colorings.

Next, let g := eval(z), and define the following walks:

Py:=1Hs, —x0Ha, —wxor1Hoy —-+ —gHa,
Py :=gHg, —gyoHs, — gyoy1Hp, —--- —1Hpg, ,,
Py = gH"/o - gzOHM - gzOZlH’Yz e ]IHW71.

Hence, we observe that:

L(zy) = Pyo(gHa, , — gHpg,) o Pro(1Hg, | — 1H,,), (3.17a)
‘C<§7\/Z\) =Po (gHaj—l — gH’Yo) oPpo (]lH'Yéfl — lHao)’ (317b)
gﬂ({y\?l) =ho <1H5k—1 - ]lH’Ye—l) © P271 © (gH’Yo — 9H50>- (3'17C)

(In checking this, the reader is advised that they must sometimes use Remark 3.7. For example, in the Py
piece of L£(Z7), the tail of the final arrow would be g - --x;_2H,;_, per Definition 3.5; however, as noted in
Remark 3.7 this is the same as g ---2j 27 1Ha,; , = eval(x)H,,_,.)
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Using this, we calculate:

A(L(zY)) = A(Pyo (gHa,_, — gHp,) o Pyo (1Hg, , — 1H,,)) (Equation (3.17a))
=A(Pyo(9Ha,; , = gHp, = gHy, = gHu,; , — gH,, — gHpg,) o Pio (1Hg, , — 1H,,))

(backtracking)
(9Ho;_, = gH,, — gHpg,) o Pro (1Hg,_, — 1H,,)) +1 (subadditivity and Fact 3.15)

(gHajfugH’Yo) oPo (]lH'YE—l — ]lHao — lH"/K—l) © Pgl © (gH’Yo — gHﬂo) oPjo (]lHBk—l — ]lHOCO)> +1

(backtracking)

IN

(
(

Apoo
AP()O

< A((LHo, — 1Hy, )0 Pz_l o (gHy, = gHpg,) o Pro (1Hp, , — 1Hq,)) + A(7Z) + 1
(subadditivity and Equation (3.17b))

= A(Pyo(1Hg, , — 1Hy,, 1H,, — 1H,, ) o Pyt o (gH,, — gHg,)) + A(@2) + 1 (cyclic symmetry)
= A(Pyo(1Hg, , — 1Ha, — 1H,, | — 1Hg, | — 1H,, ) o Py ' o(gH,, — gHg,)) + A(F2) + 1
(backtracking)
< A(Pyo(1Hg, , — 1H,, |)o Pyt o(gH,, — gHpg,)) + A(72) +2 (subadditivity and Fact 3.15)
= A(gL(yzY)) + A@2) + 2 (subadditivity and Equation (3.17c))
= ALz hH) + A@2) + 2, (translation symmetry)
as desired. O]

Using Fact 3.13, we immediately conclude:

Corollary 3.18. Let p,q,u,v be words over H such that pug and uwv™?', and therefore pvq, are relators.
Then for all colorings D, q, 0,0 of p,q,u,v respectively, A(pvq) < AN(puq) + A(uo—t) + 2.

Finally, by repeatedly using the above with the “recoloring” words from Fact 3.11, we obtain the following
useful lemma:

Lemma 3.19. Let w be a relator over H and @, W' two colorings. Then A(W') < A(W) + 2|w].

3.3 Bounding area via derivations on words

Recall our notations from §1.2: | JH is the union of the subgroups H, (regarded as a subset of G); a relator
is a word over H evaluating to 1 in G; R, is the set of relators of length at most ¢; and the in-subgroup
relators R°™™M" C Ry consisting of relators wherein all elements are contained in a single common subgroup
H),. We are now prepared to define the fillable relators which we promised in §1.2 to complete the technical

description of our main theorem, Theorem 1.12.

Definition 3.20 (Fillable relators). Let G be a group, H = (Hx < G)xea an indexed subgroup family,
and A an area function. For integers £ > 3, t > 1, we define the (length-< ¢) t-fillable relators R +(A) C Ry
to be the set of relators r = (x¢) -+ (xp—1) of length ¢ < ¢ admitting a coloring 7 = (;‘3) (i‘i) (;‘ﬁ::i)

satisfying A(7) < ¢. O

Next, we give two simple ways to establish that certain relators are fillable. Firstly, Fact 3.21 below
follows immediately from Fact 3.12:

Fact 3.21. For every £ € N (and every area function A), RG™™™ C Ry (D). In words, all in-subgroup
relators are 0-fillable. (Usefully, these include length-3 relators of the form stl where s,t are inverses in G.)

Second, Proposition 3.22 below follows immediately from the fact that all loops over a complex with
vanishing homology are fillable:

Proposition 3.22. If €€(G;H) is homologically 1-connected over T', then for every £ € N, we have Ry C
R (AL) where t .= |(€€(G;H))(2)] is the number of triangles in €&€(G;H). In words, all relators are fillable
for sufficiently large t.
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Remark 3.23. Given G, H,|UH, R (D) as above, the reader may find it helpful in what follows to keep
in mind the group presentation Py = ((JH | Re,i(4)), and the associated Dehn function. Strictly speaking,
we won’t quite refer to these concepts for a few minor technical reasons: we prefer not to have formal inverse
symbols; we prefer to think of reducing trivial words to 1 rather than to the empty word; and, we prefer to
freely allow cyclic shifts and inverses. %

Remark 3.24. When studying the Dehn function with respect to a presentation, one typically also consid-
ers “free reduction” (replacing ss~! by the empty word, s € |JH) and its opposite, “free expansion”. But these
are already included in the preceding formulation via two derivation steps.'®> For example, to implement
free reduction on a word of the form wss™ 'z where at least one of w,x is nonempty — say £ = 1 - - - T,
m > 1 — we can first reduce ss~! to 1 per Fact 3.21. We can then perform “l1-deletion” by reducing 1z; to
z1 (again by Fact 3.21, since “1xy = x1” is “in-subgroup” for any subgroup containing x1). %

Together, these observations give:

Theorem 3.25. Let w be a relator over | JH and @ any coloring. Then for every area function A, A(W) <
(t +4L) - area(w; Ry (D).

Proof. Let § = area(w; Re(A)) < oo (else there is nothing to prove) and let wo, w1, . .., ws denote a sequence
of words with wy = 1 and ws = w in which each w; is derived from w;_; via some relator in R, ((A). We
make the simple observation that

|ws| < 46, (3.26)

since any application of an Ry (A )-relator can increase length by at most ¢ (in fact, £ — 1). We also note
that inductively (on the definition of derivations), each w; is a relator. Thus for every coloring w; of w,
A(w;) is well defined (albeit it might be o).

Our main goal will be to inductively define colorings wy, w1, . .., ws of wy, . .., ws, respectively, (starting
from an arbitrary coloring @, of wy = 1) and show that

A(W) < A(Wi—1) 4+t + 20 (3.27)

This establishes A(ws) < (t 4+ 2¢) - 6 by induction (note that A(@y) = 0 since L(wWp) is a self-loop). Then
the proof is completed by observing that although the coloring w of w given in the theorem might not equal
the final coloring ws we produced, we have

A(@) < (@) + 2w| < A(@s) + 246 (3.28)

by Lemma 3.19.
To define w; and establish Equation (3.27), suppose as in Equation (1.10) that

w1 ~puq, w; ~pug, 1T ~uv € Re(D), (3.29)

and w;_1, w;, and r are all relators. By definition of R, ;(A) and Fact 3.13, we may infer that there is a

coloring u = (Zz) (Zi) e (Z‘Izllj) of u and similarly a coloring ¥ of v such that 7 := ()(v) ™! has A(F) < t.

Note that the coloring of the w-symbols in 7 might not agree with the coloring of the u-symbols in ;.
However, if we let 7’ be a recoloring of 7 in which the u-colors do agree with those in @;_1, we may conclude
from Lemma 3.19 that

AT < AF) +2|r| <t +20. (3.30)

We may now naturally define the coloring w; for w; by using the p- and g-colors from w;_1, the u-colors
appearing in both w;_; and 7, and the v-colors from 7. Now finally applying Corollary 3.18 yields Equa-
tion (3.27), completing the proof. O

15Except in the case where free reduction reduces a word to the empty word. However, we will only ever consider reducing
to 1.
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3.4 Back to loops

We now translate Theorem 3.25 into a statement about loops (closed walks) L in the coset complex €&(G; H).
Using notation from the previous section:

Fact 3.31 (Loops to words). Let L be a closed loop in €C(G;H) of length r. Then there is a word w over
UH of length r and a coloring W of w such that L(W) = L.

Proof. Write the loop L as Cy — C; — -+ = Cr_1 — Cp, where C; is a coset of Hy, for each i € [r].
Since the coset complex €€(G;H) is partite, consecutive vertices in loop L are of different “colors” (i.e.,
they are not cosets of the same subgroup). We may select elements gg,¢1,...,9-—1 € G that “witness”
each edge in L; so g; € C; N Ciy1 (indices taken mod 7). Now for z; = g;llgi, then z; € Hy, (by
Fact 2.2); and, xoxy -+ - xr—1 = 1. This word (z¢)(x1) - - (x,—1) will be the required w. Moreover, it is easy
to see that translating L by g, %, (in the sense of Fact 2.10) transforms it into the form £(@) for colored

word @ = (2°)(2') -+ (}>~"), which (again) has no two consecutive colored elements of the same color, and
0 1 Tr—1

also has eval(w) = 1. O

Corollary 3.32. Let L be a closed loop in €€(G;H) of length r and A an area function. Then there is a
word w over |JH of length r such that A(L) < (t + 4£) - area(w; Re(A)).

Proof. We invoke the prior Fact 3.31 to get a colored word w such that £(w) = L, and apply Theorem 3.25
to this w. O

3.5 The relative Dehn method

Given all this setup, we can finally prove Theorem 1.12 (giving coboundary expansion bounds in coset
complexes). We restate the theorem here:

Theorem 1.12 (Relative Dehn method). Let ' be any commutative ring and consider the d-dimensional
coset complex €C(G;H). Suppose that there exist Ro,{,t,6 € N such that:

1. every element in G can be written as the evaluation of a length-(< Rg) word over H.
2. every w € Rap,+1 satisfies area(w; Ry (Ak)) < 6.

Then €&€(G;H) has diameter at most Ry and is (2Ro+1, O((t+£)d))-homologically taut overT', and therefore
has 1-coboundary expansion at least Q(m) over I'.

Proof. The first condition (by Proposition 1.6) implies that €€(G;H) has diameter at most Ry. For the
second condition, let L be a loop of length at most 2Ry 4+ 1 in €€(G;H). By Corollary 3.32 there exists a
word w over |JH of length at most 2R + 1 such that AL (L) < (t +4¢) - area(w; Ry (AY)). By assumption,
area(w; Re(AL)) < 8. Hence AL(L) < (t444)-6 = O(5(t+¢)). Therefore, €€(G;H) is (2Ro+1, O((t+£)6))-
homologically taut over I'. The conclusion of coboundary expansion from tautness follows by the (homology)
cones method (Theorem 2.36). O

3.6 Lifting fillings between coset complexes

In this subsection, we give another useful tool for proving that some relators are t-fillable in a coset complex,
namely, by “lifting” fillable relators from another complex mapping “homomorphically”:

Theorem 3.33. Let G,G be groups and f : G — G a group homomorphism. Let H = (Hy < G)xea be

a A-indexed subgroup family for G, and H = (Hy C G)xen a A-indeved subgroup family for G. Further,

assume that f(Hy) C Hy for every A € A. For {,t € N, let Ry (AL) denote the set of t-fillable, length-< ¢

relators in €C(G;H), and let ﬁat denote the set of t-fillable, length-< { relators in C@(G’;’H). Given any

word w = (x, . .., 7e—1) over |JH, define a corresponding word f(w) = (f(zo),. .., f(xe—1)) over JH.'6
Then for £,t € N and w € Ry (D), we have f(w) € Ry,.

16Note that since f is a homomorphism, if w is a relator, then so is f(w).
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In words, the image of a t-fillable relator in €€(G;H) is t-fillable in €€(G;H).

Proof. Let w = (x¢) - - - (x;—1) be a relator assumed to be t-fillable for G (j < ¢). This means that there is a
coloring w = (ig) (;‘;:i) of w (each x; € H),) satisfying A(w) < t. Note that f(w) = (f(/\;o)) (f(ij‘__ll))

is a valid coloring of f(w) (this is because each f(x;) € f(Hy,) C Hy,). Hence it suffices to show that
AT f(w) < t. Write X := €¢(G;H) and X = €¢€(G;H) for short.

Lifting faces. First, we claim that the homomorphism f extends to a map of faces between the complexes
X and X. For 0 < i < |H|, we define
fi: X(3) = X()

in the natural way: fi({zHy,,...,zHy,}) = {fi(x)Hx,,- .., fi(x)Hy,}. To check that this map is well-
defined, suppose that {zHy,,...,2Hy,} = {2'H),,...,2'Hy,}. Then for each 0 < j < i, xHy, = 2'H),,
therefore 2~ 12’ € H,,, therefore f;(z) 1 f;(z') = fi(x7'a’) € fi(H,,) C Hy, and so fi(z)Hy, = f;(z')H,,.

Having defined f; on faces, it extends naturally to a map on oriented faces and therefore to i-chains
fi 1 CY(X;4) — CT(X;4). Further, |supp(fi(T))| < |supp(T)| for all T € X(i).

Lifting boundaries. For 0 <i < |H], let 8; : C"(X;4i) — C"(X;i — 1) denote the boundary operator for
i-faces in X and similarly for 9; in X. Our key claim is the following: For every i < |H],

fic10i = 0ifi. (3.34)
This is equivalent to the commutative diagram:

Or(x:4) —2 ot (ki — 1)

fzi lfH
CY(X;4) — CY(X;i—1)

(3

It suffices to verify this applied to a 1-sparse chain ¢ - LaHyy, oHy,)- We have:

g : 1(£EH)\0,‘..,ZEH)\i) — g : Z;‘:O(_l)j1(£EH)\O,‘..,ZEH)\i)\j

f{ Ifi—l

9L g@ g f@) 5 9 20D @) g @)

as desired.

~

Lifting fillings. Recall the colored words @ and f(w) and the corresponding closed walks £(w), E(f(w)):

]].H)\O — {,C()H)\l — —)CL‘OH-{,EZ‘,QH)\FI — ]].H)\O
and 1Hy, — f(zo)Hx, — -+ — f(z0) - f(xi2)Hy,_, — 1Hy,

in X and X, respectively. As we see from the preceding paragraph, f; maps the edges of the walk £(w) to

those of the walk £(f(w)) (using that f is a homomorphism). That is, f;[£(@w)] = [L£(f(w))] as 1-chains in
X. Now let T € C'(X;2) be a I'filling of [£(@)] with |T| < t. Since 9T = [L(@)], we deduce that

do(foT) = f105T = f[L(@)] = [L(F(w))], (3.35)

~

where we used Equation (3.34). Hence foT € CT(X;2) is a [-filling of [£(f(w))], and its size is at most ¢, as
desired. 0
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4 Chevalley coset complexes and their properties

In this section, we turn to describing the specific “Chevalley” coset complexes that our the subject of our
main application, Theorem 1.19.

4.1 Root systems

To define these coset complexes, we first have to define the underlying groups, called Chevalley groups. In
turn, to describe these, we need a geometric notion called a root system.

An (irreducible) root system of rank!'” d is a finite set of vectors ® lying in a d-dimensional real vector
space satisfying certain symmetry conditions. They are completely classified into four infinite families,
(Ad)a>1; (Ba)a>2, (Ca)a>s, (Da)a>a, plus five others (Ge, Fy, Eg, E7, Es). We do not state the definition
here, as we will not need it; see standard references, e.g., [Hum72, §11-12] or [Hal03, §8].

In turn, root systems are used to help classify finite groups of reflections in R¢. An important concept
for root systems is that of a base:

Definition 4.1. A base for rank-d root system ® is a subset IT with |II| = d such that spany(II) contains
one of £( for every ¢ € ®. Here, spany(P) (respectively, spanys (P)) denotes all nonnegative (respectively,
positive) linear combinations of vectors in P. Each root system has a unique base up to isometry, and every
base is a basis for the underlying d-dimensional vector space. O

Definition 4.2. Suppose I C & is linearly independent and ¢ € spany([); say ¢ = Znel cnn. Then we
write height; () == Znel ¢y for the height of ¢ with respect to P. %

The root systems relevant for our work are the rank-3 ones, namely As, B3, and Cs. In fact, since we
are leaving Cs for later work, we only define here A3 and B3.'®

A-type. The Ag-type root system ® 4, consists of vectors in R%+! of the form e; — e;, i # j € [d], where
e; denotes the i-th standard basis vector. (This is rank d, since all vectors are orthogonal to (1,1,...,1).)
One base for Az, depicted in Figure 4 below, is

M4, = {«,B,7}, where o = (1,-1,0,0), § =(0,1,—1,0), v = (0,0,1, —1); (4.3)

we also name the root vector
0=—(a+B+7v) =(-1,001). (4.4)

The nonnegative span of these roots is:
&} = spany({, 8,7)} N @4, = {a, 8,7, + B,a+ f,a+ B +7}.
The corresponding height function is

height 4, (o) = height 4, () = height 4, (v) = 1,
height 4, (a + 8) = height 4, (8 +7) = 2,
height 4 (a + 8 +7) = 3.

B-type. The type-By root system ®p, consists of all integer vectors in R? of length 1 (“short roots”) or v/2
(“long roots”). One canonical base for Bs, depicted in Figure 5 below, is

p, ={a,B,9}, where « = (1,-1,0), 5= (0,1,-1), ¢» =(0,0,1). (4.5)

(Note also our slight abuse of notation: «, 8 denote formally different vectors in Az vs. Bs.) We will also
name the root vector

w=—(a+B+1¢)=(-10,0). (4.6)

17We will henceforth only consider irreducible root systems of rank at least 2.
18We need not consider D3, because D3 = As.
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)
«
B a+p
(a) The root system As C R* under an orthogonal (b) The “link of 6” in As: «, B, and v are drawn
projection into R3. We also label the our canonical as solid lines; all roots which are nonnegative integer
base roots a, 3, v, and their negative sum 6 = —(a+ combinations of these are drawn as colored thin lines;
B+7). and the remaining roots are dashed and gray.

Figure 4: The root system A3 and a specific “link” within it.

Note that o and 8 are “long” and v and w are “short”. We have

5T = spany ({8, 4, w}) N g, = {B,w, ¥, B +w,w + v, B+ 20, B+ ¥ + w},
E* = spany({, B,9}) N @p, = {a, B, 0,0+ B, B+, B+ 2¢,a+ B+, a+ B+ 2, a+ 28+ 2},

The corresponding height functions are
heightz) () = height3’ () = heightz) (w) = 1,
heightz} (8 + w) = heightz) (w + 1) = 2,
height’z? (8 + 21)) = height’z) (8 + ¢ + w) =3,
and
height1§3(a) = heightl]%3 (8) = height]§3 (W) =1,
height1§3(a +0) = heightlg3 (B+v) =2,
height]}%3 (B+2¢) = heightljg3 (a+B8+19) =3,
height'$ (o + 8 + 2) = 4,
height'§ (o + 28 + 2¢) = 5.

4.2 Chevalley groups

Each root system can be combined with (almost) any finite field F to produce a finite simple (or nearly-
simple) group called a (universal) Chevalley group. We define these groups abstractly via their Steinberg
presentation:

Definition 4.7 (Steinberg presentation of a Chevalley group). Let ® be a root system and F a finite
field. The corresponding (universal) Chevalley group Gg(F) is generated by elements/symbols'® of the form
{¢,t}} for ¢ € @ and t € F. We sometimes call ¢ the “type” of the element and ¢ its “entry”. The elements
are subject to the following three families of relations:

19These elements are traditionally written x¢(t), but we will find our subscript-free notation more readable.
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B

(a) The root system Bz C R3. We distinguish “long”
and “short” roots as blue and red, respectively. We
also label our canonical base roots «, 3, ¥, and their
negative sum w = —(a + 8+ ).

B+v+w

(c) The “link of & in Bs: 8 (long), ¥ (short), and w
(short) are drawn as thick lines; all roots which are
nonnegative integer combinations of these are drawn
as colored thin lines; and the remaining roots are
dashed and gray.

a+p

(b) The “link of w” in Bs: « (long), B (long), and ¢
(short) are drawn as solid lines; all roots which are
nonnegative integer combinations of these are drawn
as colored thin lines; and the remaining roots are
dashed and gray.

Figure 5: The root system Bs and two specific “links” within it.
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e “Linearity”: For every ( € ® and t,u € IF,
HE G uly = ¢t +uj} (4.8)

(These relations imply that {{¢,0}} = 1 and {{¢,t}} "' = {¢, —t}})
e “Commutator” For every ( #% —n € ® and t,u € F,

et il = T {a¢ +n, 053 - tmul}), (4.9)

al+bned
a,beNt

where the product is ordered according to a fixed, global total order on ®, and where Cﬁ,’? € {£1,£2,4+3}
are certain so-called Chevalley constants whose values (depending only on the root ordering, not on
t,u) we will discuss below.

e “Diagonal” For every ( € ® and t,u # 0 € F, h¢(t)he(u) = he(tu), where he(t) == gc(t)ge(—1) and
g9¢(t) = {C ¢, T H{C 11

In words: the linearity relations state that multiplying elements of the same type adds their entries; the
commutator relations say that commuting (- and n-type elements produces a product of #-type elements
over all 6 in spany: ({¢,n}) N @. O

Remark 4.10. We give short shrift to the “diagonal” relations, as they will not be very relevant for our
work. This is because we mainly study “unipotent” subgroups of G (F), which never simultaneously contain
elements of both types £(.

Note also that the “linearity” and “commutator” relations would also make sense if the entries came from
a ring (without division), rather than a field. O

4.3 Graded unipotent subgroups

Before defining the Chevalley coset complexes, it will be helpful to define and study a generalization of
the unipotent subgroups of Chevalley groups, where we restrict what entries are allowed for the generators.
These subgroups were introduced in the A,-type case in [KO18], and for general Chevalley groups in [OP22].
Throughout this subsection, ® denotes a root system.

Definition 4.11. Let I C ® be linearly independent and let F, be a finite field. We define the ungraded
unipotent subgroup Up(F,) < Go(F,) as the subgroup generated by all elements {{(,¢}} where ¢ € I and
t € F,. (We omit ® from the notation; it will always be clear from context.) Note that for every J C I, we
have Uy (F,) € U;(FF,); hence Ur(F,) admits an I-indexed subgroup family (Up ;1 (Fg))ier- O

Remark 4.12. In the preceding definition, when I is a base for ®, the resulting U;(F,) is usually termed
the unipotent subgroup of Gg(F,). (Different bases lead to isomorphic subgroups.) As an example, the
unipotent subgroup of Ga,(F,), namely U;(F,) with I = {e; —e;41 : 0 < i < d}, is isomorphic to the
group of upper-triangular matrices in F@+1)*(d+1) with 1’s on the diagonal. But we will also be interested
in Uy (F,) in the case where I is linearly independent but not a base. O

Notation 4.13. Let us introduce some shorthands for the ungraded unipotent groups we are interested in,
referring back to §4.1. In the A3 case, all the ungraded unipotent groups are isomorphic, and we will write
Ua,(F,) for the case of I = {a, 8,v}. In the B case, there are two subgroups of interest up to isomorphism.
We will write U (F,) for I = {3,v,w}, i.e., the case of deleting a long root. We will write U}ng (Fy) for
I ={«,B,v}, ie., the case of deleting a short root. See Appendix D.1 below for explicit definitions of these
three groups via their Steinberg presentations. Each of these groups admits corresponding size-3 indexed
subgroup families; each subgroup corresponds to omitting one additional root from I (cf. Definition 4.11). ¢

The following related notion of unipotent subgroup was first studied by [KO18] in the ® = A; case, and
by [OP22] in the general ® case.

Definition 4.14. Let I C @ be linearly independent, let F, be a finite field, and let « be an indeterminate.
We define a corresponding graded unipotent subgroup GU;(F,) < Go(Fy[z]) as the subgroup generated by
all elements {{¢, f}} where ¢ € I and f € Fy[x] with deg(f) < height;({). (Again, this notation U;(F,) does
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not show dependence on @, but it will always be clear from context. ) Note that for every J C I, we have
GU;(F,) < GU;(F,); hence GU;(FF,) admits an I-indexed subgroup family (GUp (53 (Fq))icr- O

Notation 4.15. Referring back to the ungraded groups defined in Notation 4.13, we write GUa,(F,),

GUg(Fy), and GUJIBg3 (F,) for the corresponding graded unipotent groups, each of which (again) admits an
indexed subgroup family of size 3. O

The following proposition characterizes the structure of all elements in the group GU;(F,), and in par-
ticular implies that this group is finite:

Proposition 4.16 (|OP22, Prop. 3.14]). There exists an ordering < on spany(I) N ® s.t. the elements of
GU(F,) can be written uniquely as

I d¢r (4.17)

¢espany(I)NP

where the product is taken in the < ordering, and where deg(f:) < height;(¢).

Remark 4.18. A similar (and simpler) analogue of Proposition 4.16 holds for the group Ur(F,); the
elements in the product are of the form {{¢,t}} where ¢t € F,. We do not state it formally as we do not need
it. The same holds for Theorem 4.19 and Proposition 4.20 below. O

We also have the following very important structure theorem. The theorem follows from [OP22, Prop. 3.14],
a key component of which is [Stel6, Lem. 17]; we slightly strengthen it to give quantitative details on how
the presentation for GU;(F,) derives words:

Theorem 4.19 (Polynomial presentation). Let g be an odd prime power, and let I C ® # G2 be linearly
independent. There is a function®® k : N — N depending only on I,® — and not on ¢ — such that every
trivial word of length at most r in the symbols {(, f}} (¢ € spany(I) N ®, f € F,[z], deg(f) < height;(¢))
can be reduced to 1 by the use of at most k(r) applications of the linearity relations (Equation (4.8)) and the
commutator relations (Equation (4.9)).

(Similar facts are true for the ungraded groups, but we will not need them in this paper.)

Proof. This follows simply by inspecting the proof of [OP22, Prop. 3.14] (which in turn follows Carter’s
proof [Car89, Thm. 5.3.3] of [Stel6, Lem. 17]). To briefly sketch the proof, given any trivial word w of
length r over the symbols {{¢, f(x)}}, one repeatedly finds consecutive pairs of symbols that are misordered
with respect to <, and reorders them using the commutator relation. This may increase the length of the
word by O(1), but decreases the number of misorderings by 1. One repeats this (O(rlogr) times) until the
word’s symbols are ordered. Then one repeatedly uses linearity relations (O(rlogr) times in total) to merge
consecutive symbols of the same type. The final result is a word of the form in Equation (4.17). But now all
the symbols in this word must have entry 0, as the word itself evaluates to 1, and Theorem 4.19’s uniqueness
statement implies []ocopan (1)ne ¢, 01} is the unique representation of 1. O

We also have the following useful proposition:

Proposition 4.20. For every ®, there exists an absolute constant ro € N (depending only on @, but not
q) s.t. every element {{C, f}} in GU(F,) (for ¢ € spany(I) N ® and f € Fylz], deg(f) < height;(()) is the
evaluation of a length-(< o) word in the symbols {{n,t}} where n € I and t € Fylx] with deg(t) < 1.

In particular, the symbols {{n,¢}} with n € I and t € F[z], deg(t) < 1 generate GU;(F,).

Proof. By inspection of the bounded generation condition in the proof of [OP22, Lem. 3.13|, which uses a
number of elements that depends only at worst on the number of roots in ® and the maximum “height” of
any root in @, all of which are bounded by a function only of ®. O

These propositions can be used to give m- and p-independent diameter bounds for the corresponding
coset complexes.
We now make two further important modifications to this presentation:

20The function s has growth rate x(r) = O(rlogr), though we won’t need this.
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Definition 4.21. For the presentation discussed in Theorem 4.19, let us introduce the symbol

(¢ t,0) == {{¢, ta}}.

Following [KO21], we call these the pure-degree elements. Observe that the linearity and commutator
relations that have only pure-degree symbols on the left-hand side also only have pure-degree symbols on
the right-hand side. We will term this subset of relations the pure-degree Steinberg relations. %

By linearity (Equation (4.8)), every element in GU;(F,[z]) of the form {{(, f}} is a product of elements
of the form ((¢,¢,7)). This gives, together with Theorem 4.19, the following;:

Theorem 4.22 (Pure-degree presentation). Let g be an odd prime power and let I C ® # Gy be linearly
independent.

e Generation: GUp(Fy[z]) is generated by the pure-degree symbols (((,t,1)) where ¢ € I, t € Fy, and
i € [height;(¢)].

e Efficient presentation: There is a function kK : N — N depending only on ® and I — and not on q
— such that the following holds. FEwvery relator of length at most r in the pure-degree symbols can be
reduced to 1 by the use of at most k(r) applications of pure-degree linearity relations (Equation (4.8))
and commutator relations (Equation (4.9)).

4.4 The Chevalley coset complexes

Kaufman and Oppenheim [KO18] showed how to construct bounded-degree HDXs from coset complexes
over Ga,(F) 2 SLy41(F), and O’Donnell and Pratt [OP22] generalized their work to all Chevalley groups.
(See [GV25] for further generalizations.) Let us recap the main construction and theorem from [OP22]:

Definition 4.23 (|OP22]). Let F, be a finite field of characteristic at least 3,%! and let Fym = F[z]/(p(x)),
where p(z) is an irreducible of degree m. Consider the Chevalley group G¢ (Fym) (Definition 4.7). Let @ be a
rank-d root system, and II C ® a base. Define the “special” root set A := ITU{(}, where ¢ := — Znen n e .

For every I C A, define the subgroup U; (Fy,m) < Go(Fym) as the subgroup generated by elements {{¢, f}}
for ¢ € I and f € Fy[z]/(p(x)) with deg(f) < height;({).?> Then, we define the d-dimensional coset complex:

8D, (m) i= €C(Ga(Fyn); (U g (Fgsm)nen ). (4.24)

O

Notation 4.25. We use the notations (A2(m)),, and (B3(m)),, for the coset complex families (in the sense
of Definition 4.23) corresponding to the As and Bs root systems, respectively. The former were constructed
in [KO18] and the latter in [OP22]. O

We will need to record a couple of facts about these complexes, before recalling the main theorem about
them.

Proposition 4.26 ([OP22, Thm. 3.18|). In R®4(m), suppose vertex o is a coset of H,, n € A. Then the
link of o in KD ,(m) is isomorphic to the coset complex @@(ﬁA\{n}(Fq, m); (ﬁ{n,é},m)cel\\{n})-

Proposition 4.27 (|OP22, Cor. 3.19]). For every ®, RD,(m) is 0-connected, and further, for every 0 < i <
d — 2, the link of every i-face is 0-connected.

Also, the following follows immediately from the definitions:

Fact 4.28. If m > max{height;({) : ¢ € spany(I) N @}, then every ﬁI(Fq,m) = GU(F,). If m = 0, then
every Ur(F,,0) = U (Fy).

This fact, together with Proposition 4.26, motivates the following definition.

21See Footnote 6.
22Note that since II is linearly independent, every proper subset of A is also linearly independent.
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Notation 4.29. We use the notations &£As(F,), GLB™(F,), and GLBE(F,), for the coset complexes

for the graded unipotent groups GUa,(F,), GUg} (F,), and GUJI_E;g3 (Fy), respectively. (These are each 2-
dimensional coset complexes defined using the natural indexed subgroup family, cf. Definition 4.14.) For
m > 4, in ng(m)7 all vertex-links are isomorphic to &£A3(F,). For m > 6, in %2(m), all vertex-links are
isomorphic to GLB™(F,) or BLBE(F,).

We also use the notations £2A3(F,), £B5"(F,), and LBE(F q) to denote the coset complexes for the
unipotent groups Ua, (F,), Ug! (Fy), and U}Bgs (Fy), respectively, vis-a-vis the subgroups obtained by omitted
one additional root (cf. Definition 4.11). Vertex-links in 23 (0) are isomorphic to £23(F,) and vertex-links
in B3(0) are isomorphic to £B5" (F,) or LBE(F,). O

4.5 Spectral expansion of Chevalley coset complexes

We now give the main theorem from [OP22]| about these coset complexes (excluding the case “Gy” for
simplicity; see [Pra23] for its treatment).

Theorem 4.30 ([OP22, Thm. 3.6, Cor. 3.7]). Let ® # Ga be of rank d. Then (RP,(m))men is a strongly
explicit family of simplicial complezes on ¢®™) wvertices, of bounded degree D = ¢q°V), and has j-spectral

expansion parameter at most NGE 1 —.
q/2—(d—1—j)

5 Proof of Theorem 1.19

In this section, we discuss the proof of our main application theorem, Theorem 1.19, which we restate here:

Theorem 1.19 (Main application). If ¢ is a sufficiently large power of 5, the 2-dimensional simplicial

complezes %2(771) have 1-cosystolic expansion at least (€g, o) over Zo and Zs, where €g, 19 > 0 are universal
constants.

5.1 Lifting between unipotent subgroups

To prove Theorem 1.19, we develop a final useful notion: homomorphisms between Uy (F) and GUy (I~F) where
F 5 F is a field extension. We will use these homomorphisms to “lift” (computer-generated) “fillings” of loops
between the corresponding coset complexes. These homomorphisms were implicitly studied in a slightly
different context in the Az case in [KO21, Lemma 7.13].

Theorem 5.1. Let I C ® be linearly independent, let I be a finite field, and FDOFa field_extension.
Consider the two unipotent subgroups U(F) and GU;(F). Suppose we have field elements tc, € F for ¢ € I,
be{0,1}.

Define a map f: Ur(F) — GU;(F) by specifying that for n = >ocer G, andu €F,

Sln,ult = {{n, ullee,(team + 1) B
Then this map is a homomorphism.

Proof. Tt suffices to check that the f-image of every relation in the Steinberg presentation of Ur(F) (the
“m =1 case” of Theorem 4.19) is true within GU;(F) (the general-m of Theorem 4.19). (This is sometimes
called van Dyck’s Theorem. In fact, each f-image will be a Steinberg relation in the latter group.) It is easy
to verify this for the linearity relations, so it remains to verify it for the commutation relations.

In U;(F), commutation relations are of the form

({10 {0, upl] = T {Han+08,077 - 12t}

an+bled
a,beNt

Suppose the roots 7 and 6 have expansions = > ..y ccCand 0 = 3y dcC. Then an+b0 =3 (acc+bdc).
So by our definition of f,

fn 03 =t eer(teaw +tc0) B
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FHOul = {0 uTleer(beam +teo)® },
flan +60,C0 - tou’ Yy = {{an + 00, C70 - t9u” [ e (team +te0) 9}

Applying the commutator relation in Uy (?[m]gl) gives:

Fin, 63 {0, ul}]

[0 Tees (team +teo) B 0 u e (teaw + tco)™ B
1 tan+00.07 - (+TTccs(tene +teo)) (ullecrtens +1c0)) B

an+boed
a,beNT

H {{an + b6, omotayd . H(el(talf + t<70)acC+bdf }}

an+boed
a,beNt

= [ fHan+v0,C70 - touty,
an+boed
a,beNT

and so the image of a commutator relation is indeed a (commutator) relation. O

See Remark D.9 below for an explicit example of these lifting homomorphisms in the A3 and Bj3 cases.
Note that using the pure degree symbols, the image of an element {{n,u}} in Theorem 5.1 is the multi-
nomial expansion:

H (n,u ng[ t?bg ) Z(e[ cche)).- (5.2)
beell]:¢el

We call this general form a nonhomogeneous lift. One useful special case that simplifies the notation consid-
erably is the homogeneous lift, where for every (, either t¢; or t¢ o is zero:

Corollary 5.3 (Homogeneous lifting). Let I C ® be linearly independent, let F be a finite field, and FOF
a field extension. Consider the two unipotent subgroups Ur(F) and GU[(F). Suppose we have (t; € F)cer

and (be € [1])¢cer. There is a (unique) lift homomorphism f : Up(F) — GU(F) such that for every ¢ € I
and u € T,

JHSG ul} = (¢ ute, be)).
The image of an element of type n = del ccG is:

i uly = (. uH(eI t?ng‘el c¢he)).-

5.2 The proof

This proof relies on several ingredients: the relative Dehn method (Theorem 1.12), the local-to-global theo-
rem for cosystolic expansion (Theorem 2.33), spectral expansion of the Bs-type Chevalley complexes (The-
orem 4.30), and two new theorems:

Theorem 5.4 (Bound for fized Bs links). £B5™(F5) and S‘ng(lﬁ‘g,) are homologically 1-connected over [Fy
and 3.

Theorem 5.5 (Strong lifting theorem for Bs links). Recall Definitions 1.4, 1.8 and 1.9. There exists
5,4,19 € N such that for every odd prime (power) p and every k > 1:

1. Recall GUGN(Fpx) and its subgroups H. For every ¢ € @SBT’+, t € For, and i € [height3) (()], there
exists an “alias” word ((,t,1)) of length at most ro over H evaluating to ((C,t,4)) in GUES (Fp) such
that the following holds. Consider the following three sets of relators over H.:

o RSt which is defined as the image of the set of pure-degree Steinberg relations in GUE(Fpr)
under the “aliasing” mapping replacing each pure degree element ((,t,4)) with the corresponding

word (¢, t,1)).
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o RoMMON the set of in-subgroup relators in GU%I;](]Fpk> of length at most £ (Definition 1.13).

o REU which is defined as the union, over all lifting homomorphisms ¢ from Ugl(Fp) to GUR (F )
(in the sense of Theorem 5.1), of the image of the set of all length-€ relators in Uz (F,) (in the
sense of Theorem 3.33).

Then every w € RS has area(w; R¢emmon U REIf) < 4.

2. The same holds for GUJIBg3 (Fpr) and @g;r,

See Theorems D.13 and D.14 for fully explicit (but quite long) versions of this theorem.

We prove Theorem 5.4 by explicitly analyzing the homology of the complexes £B5"(F5) and s%gg (Fs)
on a computer; we give details on how we did so in §6 below. Theorem 5.5 is essentially a group-theoretic
result about the graded unipotent subgroups GUg (F,x) and G’U}gg3 (Fpr). A proof of this theorem appeared
in an earlier version of this work, but it was highly laborious and so we have omitted it in favor of referring
to the Lean formalization which eventually appeared in [WBCS25].

Now, we put the pieces of the puzzle together and show how Theorems 1.12, 2.33, 4.30, 5.4 and 5.5 suffice
to prove Theorem 1.19.

Proof of Theorem 1.19. Let Ry = rq - |®|, where rq is the fixed constant guaranteed by Proposition 4.20 (for
® = Bs, no dependence on g or m). Let 4, ¢,y be the fixed constants guaranteed by Theorem 5.5. There by
Theorem 2.33, there exists v > 0 s.t. it suffices to check the following: For every m € N, %gk (m) satisfies:

1. B3, (m) is 0-connected.

2. All vertex-links in 9B} (m) are 0-connected.

3. All edge-links have O-spectral expansion parameter at most ~.
4. Every vertex-link has coboundary expansion at least 5 over I'.

Items 1 and 2 follow from immediately Proposition 4.27. Item 3 follows from Theorem 4.30 assuming that

we take k to be sufficiently large so that m < 7. The main challenge is therefore proving Item 4.

To prove Item 4, we apply the relative Dehn method (Theorem 1.12). All vertex-links in %2(771) are
isomorphic to either & LB (F,) or GLBE(F,); we consider the case LB (F,) WLOG.

Recall that I = {,9,w}. Consider the group G = GUg(F,;) = GU;(F,). Let H denote the correspond-
ing I-indexed subgroup family H = (GUp\(¢})cer (cf. Definition 4.14). Hence X :== 6 LB (F,) = €C(G;H)
by definition.

We now apply Theorem 1.12 to X. By Propositions 4.16 and 4.20, every element of G can be expressed
as the evaluation of some word over H of length at most Ry. So, it suffices to check that every w € Rop,+1
satisfies area(w; Re()) < ¢, where Ry () is the set of ¢-fillable relators of length at most ¢ in X, and ¢t and
0’ is a (large) constant of our choosing.

First, we apply Theorem 4.22 to conclude that all relators over H of any fixed length (in particular
2R + 1) can be derived in a fixed number &} of steps from R5*. (Note that Theorem 4.22 uses elements
which may not be in #, but any derivation from Theorem 4.22 can be simulated using alias words which are
over H, at the cost of a multiplicative factor of () in the derivation length.) Next, we apply Theorem 5.5 to
get that every relator in RS* can be derived in a fixed number of steps from Rgommeny R%i“. So, it suffices
to check that Rgemmon C R, ,() and RE® C Ry ,(). The former follows immediately from Fact 3.21. For
the latter, we combine Theorems 3.33 and 5.4 and Proposition 3.22, and take ¢ to be the total number of
triangles in the base complex GLB5™ (F,). O

6 Computational analysis for Bj

In this section, we discuss how we proved Theorem 5.4 via a computer analysis, and various other aspects of
using computers to calculate the homology groups of Chevalley complexes (including how we checked that
some Chevalley complexes are not homologically 1-connected over certain finite fields).

The computational analysis (proof of Theorem 5.4) is divided into a “pipeline” of two separate parts:
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1. Calculating the triangle-edge incidence matrix of Chevalley link groups over finite fields F,.
2. Calculating the rank of an arbitrary sparse matrix over finite fields F,,.

Together, these two parts let us calculate the first Betti numbers of the relevant complexes, and therefore
check homological 1-connectedness over F, (cf. Definition 2.19). (We emphasize that p and ¢ may be
different.) For the rank calculation, we used some prebuilt tools. We address these two parts in separate
subsections.

6.1 Generating the incidence matrices

We wrote a C++ script (after prototyping in Sage) to generate the triangle-edge incidence matrices of the
complexes £2As(F,), £B5™(F,), and £BE(F,) for arbitrary prime powers ¢.2% (For the largest complex,
£%gg(lﬁ‘q), this is only practical up to ¢ = 7.) Here we describe how the script works for the S‘Bég (Fq) case;

the functionality for other complexes is similar. Recall that the base vectors for 2%? (F,) are denoted «, 3,
and .

1. We define a subroutine which, given a root vector ¢ € ®p, and coefficient ¢ € IF;, computes the 7 x 7
matrix over F, corresponding to the Chevalley group element {{(,t}}.

2. We greedily enumerate an unordered set of all matrices in the unipotent group U}ng (F,). Initially, the
set contains only the identity element 1, and then, while possible, we add new elements to the set by
multiplying existing elements by the generators {{a, 1}}, {{3,1}}, and {{,1}}. (This set contains ¢°
matrices, which is ~ 1.95 - 10° when ¢ = 5 and ~ 40.6 - 105 when ¢ = 7.) Each matrix (group element)
corresponds to a triangle in the complex S%ég(lﬁ'q).

3. We use a similar procedure to enumerate the edges in the complex:
e The “red-green” edges correspond to cosets of the group generated by « elements in of U}ng (Fy).
e The “red-blue” edges correspond to cosets of the group generated by 8 elements in U}Bg; (Fy).

e The “green-blue” edges correspond to cosets of the group generated by v elements U}Bg_3 (Fyg).

Each coset therefore contains ¢ matrices, and there are ¢® coset of each type.2* We also construct

dictionaries mapping elements of U}i (F,) to their three corresponding cosets, or equivalently, mapping

triangles in Sl%gg(]Fq) to their three corresponding edges.

4. We output the triangle-edge incidence matrix in the sms (sparse matrix storage) format in order to
subsequently calculate their rank. We emphasize that this matrix only has +1 and 0 entries, because
we consistently orient all triangles as red-green-blue.

Remark 6.1. Recall that given some fixed ordering of the roots in a positive subset, every link group
element can be expressed uniquely as a product of elements of each type in the link. If the link has e roots,
then we go from encoding group elements as n xn matrices over F, (n = 7 in the case of B3) to length-t vectors
over [F;. This could be the basis for a more memory-efficient program to output the triangle-edge incidence
matrix. This program also has the nice property that the set of triangles (a.k.a. group elements) is simply the
product set F. Further, e.g. the red-blue edges correspond to cosets of the subgroup Krep N KpLur = Fy
and so may be represented by length-(e — 1) vectors. Indeed, even calculating the red-blue edge incident to
some triangle is just some polynomial mapping Fy — IFZ_I. However, we chose to keep the current matrix
group approach as it is more “canonical” (does not require fixing orderings of the roots) and as computing
the rank, not outputting the incidence matrix, is the bottleneck step. %

23This script will be uploaded on Github for the final version of this paper.

24We do not need to explicitly write down the vertices of the complex, but if we were to do so, the “red”, “green”, and “blue”
vertices would correspond to cosets of the subgroups generated by « and 3 elements, a and 1 elements, and 3 and 1) elements,
respectively. There would be ¢° red vertices, ¢7 green vertices, and ¢° blue vertices.
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g || 1@ | [X@] | [X©O)] | wX) || BL(X;F2) | Bu(X;Fs) | B(XFs5) | Bu(X;Fr)
2 64 96 32 65 2 2 2 2
3 729 729 135 595 0 0 0 0
5 1 15,625 | 9375 | 875 | 8,501 0 0 0 0
7 || 117,649 | 50,421 | 3,087 | 47,335 0 0 0 0

Table 1: First Betti numbers of the type-As link complex X := £23(F,) over various small finite fields.
)| = ¢* + 2¢3 vertices. Therefore,

The complex has |X(2)| = ¢% triangles, |X(1)| = 3¢° edges, and |X(

u(X) = X(1)] = [X(0)| + 1 =3¢° — (¢" +2¢°) + 1.

(
0

g || 1X@I | O] | 1XO)] | X)) || Bu(X;F2) | Bu(X;Fs) | B1(X5Fs5) | Bu(X;Fr)
3 2187 | 2187 | 351 | 1837 12 12 12 12
5 78,125 46,875 3,875 43,001 0 0 2 0
7 || 823,543 | 352,947 | 19,551 | 333,397 0 0 0 2

Table 2: First Betti numbers of the small type-Bs link complex X = £B5™ (F,) over various small finite fields.
The complex has |X(2)| = ¢7 triangles, |X¥(1)| = 3¢% edges, and |X(0)| = ¢° + ¢* + ¢* vertices. Therefore,
w(X) = [X(1)] = |X(0)] + 1 =3¢° — (¢° + ¢* + ¢*) + 1. We also verified that for ¢ = 3, 81 (X;F,) = 12 for

p e {11,13,17,19,23,27,29}, and ¢ = 5, 81 (X;F,) = 0 for p € {11,13,17}.

g || XL | x| XO) | (X)) || Bu(EsFa) | Bi(X;Fs) | Bi(X;Fs) | Bu(X;Fr)
3 19,683 19,683 3,149 16,525 0 1 0 0
5| 1,953,125 | 1,171,875 | 96,875 | 1,075,001 0 0 0 ?
7 |/ 740,353,607 | 17,294,403 | 957,999 | 16,336,405 ? ? ? ?

Table 3: First Betti numbers of the large type-Bs link complex X := S‘ng(ﬂ?q) over various small finite fields.
The complex has |X(2)] = ¢° triangles, |X(1)| = 3¢® edges, and |X(0)| = ¢" + ¢® + ¢° vertices. Therefore,
p(X) = |x(1)| = [X(0)[ +1=3¢"— (¢ +¢° +¢°) + L.

6.2 Computing the rank of the matrices over F,

Let ¢ be a small prime (typically 2, 3, 5, or 7). As mentioned in the previous subsection, in the complex
£BIE(F,), the “large link” of Bs over F,, there are ¢° triangles, 3¢® edges (¢® for each possible color-pair), and
g7 + ¢ + ¢° vertices. The triangle-edge incidence matrix of this complex is a ¢° x 3¢® matrix with three 1’s
per row,?> and we managed to calculate its rank over various small finite fields F,, for small values of g. See
Table 3 for the results, and Tables 1 and 2 for similar results for the complexes £A3(F,) and £85" (F,). To
make the presentation more readable, we enumerate the first Betti numbers (1(-;F,). Recall that a complex
is homologically 1-connected over I, iff its first Betti number over F,, is 0, and that the first Betti number
of X over I equals u(X) — rank(6%;T).

(Note that the vanishing of homology is already guaranteed for £23(F,) by the absolute Dehn method
and algebraic calculations in [KO21], but we calculated the ranks for this complex as a sanity check.)

Details of the rank calculation. For highly sparse matrices such as these, using Gaussian elimination to
calculate the rank can be tricky: In an m x n matrix with O(1) nonzero entries per row, there are only O(m)
total nonzero entries, but an unlucky choice of pivots for Gaussian elimination can cause fill-in, making the
resulting matrix dense, with Q(m?) nonzero entries. When m ~ 10° and especially when m ~ 107, with our
computing resources we can only afford ©(m) memory (megabytes), not ©(m?) memory (terabytes).

25 As mentioned earlier, we can pick triangle and edge orientations such that no —1 entries are needed.

31



However, we did manage to perform the rank calculation, even for 62%? (F,), in the ¢ = 5 case. (This
is why Theorem 5.4 and therefore our main application theorem Theorem 1.19 are only stated for this case.)
Recall, the ¢ = 5 triangle-edge incidence matrix is 1,953,125 x 1,171,875, so this rank computation was quite
expensive. We used the software package 1inbox [Linl8|, which implements sparse Gaussian elimination over
finite fields. This computation already took roughly 10 hours to run on our personal computers; ¢ = 7 would
be impractical, given the huge blowup in time and memory usage. We also received independent confirmation
of the rank from an optimized program for calculating ranks of sparse matrices over Fo due to Ryan Bai and
Richard Peng (personal communication).?%

Interpretations of tables. We use that £B5™(F5) and £B:£(F5) are both homologically 1-connected over
Fy and F3. In contrast, £B5™ (F5) is not homologically 1-connected over Fs (though £B'(F5) is), meaning
it does not have coboundary expansion over F5. Similarly, £B5"(F7) is not homologically 1-connected over
F5, and £B5"(F3) is not homologically 1-connected over Fy, F3, F5, or F7. In particular, these imply that
LB (F3), £B5™(F5), and £B5"(F7) are not simply connected.

Conjecture 6.2. We conjecture that for every odd prime power q, £85" (F,) is never homologically 1-
connected over F,, and therefore that it is not simply connected.
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A  Why Aj’s link is simply connected and Bjs’s might not be

In this appendix, we discuss why in the As-type setting, [KO21| were able to prove that £23(F,) and
& LA3(F,) are simply connected for all odd prime powers p, while in the Bs setting, we conjecture that such
a theorem is not true (Conjecture 6.2).

For £23(F,), the [KO21] result is equivalent (via the absolute Dehn method) to stating that all Steinberg
relations in Uy, (Fp,) can be derived from in-subgroup relations in Ua,(Fr,), in a number of steps which is
independent of p. This is due essentially to Biss and Dasgupta [BD01].2” The key step of the [BD01| proof
(essentially the only difficult one) is to derive the relation “a+ 5 and 8+~ elements commute”. (This makes
sense as a first step because it is the only relation in the A3 case which does not name the “missing” root
a+ B+ v.) We give our own shorter (and perhaps conceptually clearer) proof of this relation, and then
discuss why we do not know how to prove analogous relations in Bs.

A.1 An alternative proof of Biss—Dasgupta

In this section we give an alternative proof of the key Biss—Dasgupta result [BDO1, Sec. 4], which states
that over the ring Z/pZ with p odd, the fact that (o + B)-type and (5 + )-type elements commute can be
derived only using “in-subgroup relations”. In fact, our proof works within the unipotent group Uyx,(R) for
any ring R in which % exists (i.e., 1 + 1 is a unit).

Our proof, as in the original proof in [BD01, §4] proof, starts by deriving the following useful “rewriting”
relation in Uga, (R):

Relation A.1. For any ring R, whenever the elements ;25 and tj_—“v exist, one can derive

{a t B8 uf{o v} = {8, 25 Bt + v {8, Z5 1

using only in-subgroup relations in Ua,(R), and the number of steps in the proof does not depend on R. The
same holds replacing a’s with 8’s and 8’s with ~v’s.

Proof. First, note that u = % + ti—“v Thus, we can write, by linearity of 8 elements:

{o th{8, uli{{a, v}}
= {a. {8, 55 B, 5 Bl 0}

27The original [BDO01] proof did not emphasize the quantitative bound on the length of the derivation, and in particular, the
fact that the length of the derivation does not depend on the size p of the ring.
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And by the definition of the commutator:

= {8 Do 1) [(on ) 8 2 [ B oo o] (o ol 8. 2.

Using the fact that inverting «, 8, and a + [ elements is the same as negating the respective entries, and
that the commutator of o and [ elements is an « 4+ 8 element whose product is the element of the entries,

these two commutators cancel (they are o+ 3 elements with entries t74 and —t4%, respectively. Linearity

of a elements gives the desired relation. O
Now, we can prove:

Relation A.2. In any ring R containing %, one can derive that

Vt,u € R, [{a+ 8,1, {8+ ull] =1

using only in-subgroup relations in Ua,(R), and the number of steps in the proof does not depend on R.

Proof. For this proof, we need some subgroup identities. We use four identities which expand elements as
commutators (using, again, that inverting a ¢ element negates its entry for ¢ € {«, 8,7, a+3,8+~}). These
identities require that % exist in R:

{o+ 8,1 = {8, 1} {{a, {8, Wi {{a, 1},

{8+ ult = {v, —2u {8, s {1y 2u BB, -3},
{f{o+ 8, —t} = {8, s P, 268, — 3 H{{a, -2t}
{8+ —ul} = {7, —u {8, — 1Ly, w3 {8, 13-

We also require four identities for swaps following from Relation A.1; again, these require 2 to exist in

{{o, =t B8, s Hl{a 2 = {8, 1H{e, BH{B. — 3 1
{7, 2038, — 3 }H{y, —ul = {8, 3}y, wBH{B, -1},
{8 3Hly, —2u {8, 11 = {{y, —u {5, 28, —ull,
{8, —11 e, 2t 3B, -1} = {o, —t BB, —2{{a, —1}}-

The basic plan is now to write down [{{a + §,t}}, {8 + v, u}}] and expand using Equations (A.3) to (A.6).
We proceed as follows:

[{{o+ B, 1 {8 + 7, ul]
Expand the commutators:

={{a+ 8t} {5 + v uppffa+ 5, —tH{A + 7, —ul}
Expand with Equations (A.4) and (A.5):

= {{a+ 8,3y, —2u {8, s v, 20 {8 — s BB, s Bl 2638, — 3 FH{ev, 2t (B + v, —u}}
Cancel the 5 elements:

= {{a+ 8. )y, —2u {8, s B, 2ulb {{e, 26 {8, — 3 IH{ev, —2t}H{{B + 7, —u}}
Expand with Equations (A.3) and (A.6):

= {8, — 13 {a. {8, 1} o —t 1y —2u {8, 3}l 2u}
Ao 2018, =3 Bl 2631y, —u {8, 13y, wBH{B, 11

P

R

—
;>/-\
-
o
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Commute « and v elements where possible:

= {8, —1}{a, {8, 1}, —2uPH{o —t {8, 31 H{e 2t}
Ay 208, — 3 B —u s =208, 13y, w (B, 11

Swap « - - a products for -« - 8 products and similarly for v and 8 (Equations (A.7) and (A.8)):

= {8, —1}H{o, BB, IH{y, —2ulH{B, 1H{o, {8, — 3 }}

A8 5 B w8, -1 o 2638, -1y, u {8, 1}

Cancel adjacent g elements:

= {8, ~ 1 {{a t {0, 1H{y, =20 b {8, L e 3y, w8, — 1 f{len 20545, —1H{{y, w3H{B: 1}
Do another swap (Equations (A.9) and (A.10)):

= {8, 1 e {1, —u {8, 20y, —u i e s wibffas =t HB, =23 {en —t3H{r, u b {8, 1

Commute « and v elements and therefore cancel them:

= {8, —1 e t3H{{v, —u b {15, 25 {5, 2 {e, =t {{y, wH {5, 1)}

Cancel 3 elements:

= {8, —13{{o tHH{r, —uli{la, —t{{y, u {8, 13}

Again commute and cancel o and ~ elements:

= {8, —13H{5, 11}

Finally cancel 8 elements:

=1,

as desired.

Incidentally, the fact that Relation A.2 holds implies that in any link complex £2(3(F,), there must be an
I-filling of the loop corresponding to the critical relation [{{a + 8, t}}, {8 + v, u}}] = 1. We found a simple
(human-verifiable) proof of this fact, illustrated by the diagrams in Figure 6. The [{{a + 8,t}}, {8 + v, u}}] =
1 relation corresponds to a loop of length 4, alternating between RED and BLUE subgroups; this is

the orange outer loop in the figures. In the coset complex, some (but not all) RED - BLUE - RED -

BLUE “squares” have the property that they are I'-filled by 4 triangles, all incident on the same GREEN

vertex. Although the orange outer loop does not have this property, we find five other squares that are fillable
in this way, and such that the I'-boundary of these squares is the orangle loop to be filled. The arrangement
of these squares is depicted in the left figure, and the full filling by triangles is depicted in the right figure.

Overall, this gives an I-filling of the critical relation [{{a + 5,t}}, {8 + 7, u}}] = 1 using 20 triangles.
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Figure 6: Depiction of the Fo-filling of relation [{{a+ 8,1} {8+, 1] = 1 in £A3(F,). In the
left-hand figure, the vertices are labeled 1,...,8. These correspond to the following cosets: H,, H.,,
fo+ B 18 Ho, {6+, 1y, {8 18y, 2], {8, 1H{es 1 Ha, o+ 8,118, 23, 15, and
{8+, 1B, 3 B{{r, 21} H,, respectively.

A2 Ag VS. B3

Let us now reflect on some key features of Ua, (Fy) that let us write this proof. Firstly, o+ and 8+ were
expressible as a-8 and -y commutators, respectively. By using factors of 2 and % in two of the expansions
(Equations (A.4) and (A.5)) but not the others (Equations (A.3) and (A.6)), we were able to introduce some
asymmetries allowing us to eventually swap n{n type products for (n( type products. We also got mileage
out of the complete symmetry between the pairs a, 5 and 3, 7.

We tried extensively to find a similar derivation for the group U} (F,): A proof, using only in-subgroup
relations, that 8+ v and ¥ + w commute. However, the situation there is not as nice: 8+ v is not the only
root in the positive span of 8 and : 8+ 24 is as well! Thus, 8 + 1 elements are not commutators of 5 and
1) elements. They can be expressed as 18181y products, but the entries on the first and last ¢ elements in
this expansion are the same, so we have less asymmetry to play with.

We also attempted to replicate the A3 success depicted in Figure 6; that is, we used a computer to look
for reasonably small, “nicely structured” fillings of the cycle corresponding to the commutation relation for
B+ ¢ and 9 + w roots in £B5"(F5). Unfortunately, we concluded that there is no comparably small and
symmetric filling.

B The homology cones method for (commutative) rings

In this appendix, we prove Theorem 2.36, restated as follows:

Theorem 2.36 (Cones method, generalizing [KO21, Thm. 3.8]). LetT be a ring and let X be a 2-dimensional
simplicial complex. Assume that X is strongly symmetric (and therefore ma is the uniform distribution
on X(2)). If Ry is the diameter of X and X is (2Rg + 1, R1)-homologically taut over T, then X has 1-
coboundary expansion at least 1/Ry over T.

Our proof generally follows that of [KO21], but it works for general coefficient rings I' (and also is shorter,
as it is specialized to the 1-dimensional case).

In order to prove Theorem 2.36, we need a bit of setup. Firstly, we use some simple facts about sampling
in strongly symmetric complexes:

Fact B.1. Let X be a strongly symmetric 2-dimensional complex. For every fized triangle t € X(2) and
@ ~ Aut(X) uniformly, et is distributed uniformly on X(2).

Proof. By the orbit-stabilizer theorem, for any group G acting on any set .S, for fixed € S and uniformly
random g ~ G, gz is uniformly random on the orbit Gz of z. In particular, if the action of G on S is
transitive, Gx = S and so gz is uniform on S. We apply this to the case where G = Aut(X) and x =¢t. O
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Fact B.2. Let X be a strongly symmetric 2-dimensional complex. For every fized ¢ € Aut(X) and e ~ 7y,
-1

@~ e is also distributed according to 7.

Proof. Consider the distribution of ¢ ~'e when e ~ 7;. By definition of 71, this distribution is equivalent to
the following process: Sample ¢ ~ X(2) uniformly, sample e C ¢ uniformly, and output ¢~ 'e. Equivalently,
one can sample ¢t ~ X(2) uniformly, sample e C ot uniformly, and output e. Moreover, @t is distributed
uniformly on X(2) (since ¢ is an automorphism of X and therefore a bijection on X(2)). So, we might as well
sample t ~ X(2) uniformly, sample e C ¢ uniformly, and output e. But this is just sampling from 7. O

For two 1-chains f,g € C*(X;T), we define an inner product

(fg)= 3 fe)-gle).

e€X(1)

(There is a slight abuse of notation here: The sum is over undirected edges {u, v}, but f and g are defined
on directed edges (u,v). However, this does not cause a problem, because by antisymmetry, f(v,u)g(v,u) =
f(u,v)g(u,v).) We similarly define, for two 2-chains S, T € C*(X;T), an inner product

(8,T):= Y f(t)-g(t).
)

tex(2
We have the standard adjointness identity: For every f € C1(X;T) and T € C?(X;T),
(f,02T) = (3" f.T). (B.3)
When W = (vg — --- — vy) is a walk and f a 1-cochain, we define

1

Swi = (W, f) =Y f(vi1, 1)

i=1

(we ignore terms where v;_; = v;). Hence Sy f + Sy f = Zwow- f (assuming W’ begins where W ends)
and =Xy f =y -1 f.

The idea behind the cones method is now as follows. If there were some perfectly explanatory 0-cochain
(vertex-assignment) h for f, we would have f(u,v) = h(v) — h(u) for every edge (u,v) € X(1). Hence for any
walk W from u to v, we would also have Xy f = h(v) — h(u) by telescoping. We can therefore make a guess
I’ for an explanatory assignment by setting h'(u) arbitrarily and h(v) := h/(u) + Zwv given a walk W from
u to v. (If the walks W are picked via breadth-first search, this process can be viewed as “propagating” the
guessed value h/(u) along the walk W by setting h'(v1) = f(vo, v1) + A/ (vo), W' (v2) = f(v1,v2) + k' (v1), and
so on.) If a perfectly explanatory assignment exists (and X is connected, so that walks exist), this procedure
will produce an h’ which perfectly explanatory. Indeed, if the paths are short, this could potentially still
produce a mostly explanatory assignment even if no perfectly explanatory assignment exists. We formalize
this intuition in the following.

To analyze these propagated assignments, we will be interested in quantities Yy f where L is a loop and
f a l-cochain; this can be viewed as a sum of f “around” the loop L. (In analogy to differential geometry,
for a loop L, this quantity can be viewed as a measure of the circulation or holonomy of f around the loop
L.) The following key claim is a sufficient condition for a 1-cochain to “vanish” around translations of a loop:

Lemma B.4. Let L be a loop . Then there exists a set of triangles T C X(2) of size |T| < AL (L) such that
for every ¢ € Aut(X) and 1-cochain f € CY(X;T), if T Nsupp(d' f) = 0, then S,rf = 0.

Proof. Let S € C%(X;T) be a minimum-size [-triangulation of L; that is, 925 = [L]r and |[supp(S)| = AL (L).
We set T := supp(S). For every ¢ € G, 02(¢S) = p(025) = ¢[L]r = [¢L]r. Hence by adjointness, ¥, f =
(S, 81 f). This indeed vanishes whenever supp(pS) = ¢T is disjoint from supp(d'(f)), as desired. O

Consequently, strong symmetry gives:

39



Corollary B.5. Let L be a loop and f € CY(X;T) a 1-cochain. Then for ¢ ~ Aut(X) uniformly:
Pr[S,rf # 0] < AL(L) - dist(s' £,0).
v}

Proof. Using the prior lemma and Markov’s inequality,

Pr{Srf #0) < PrlgT Asupp(@ ) 200 Y0 3 Prlet = ] = [supp(6')] 171 -

tesupp(dl f)t'eT

where we used that Pry[pt = t'] = @ 2)| from Fact B.1. O
Using this proposition, we now prove:

Proof of Theorem 2.36. Pick a vertex u and, for every vertex v € X(0), a walk P, from u to v. (By assumption
on the diameter of X, |P,| < Ry.) For ¢ € Aut(X), define a “rotated” walk Py = pP,-1,, also from u to v.
Using these walks, we define a collection of O-cochains (i.e., vertex-labelings) h, € C°(X;T):

h@ (’U) = Zp:f f

We show that in expectation over ¢ ~ Aut(X) uniformly, h,(v) has low error in explaining f.

To do so, we give a condition equivalent to (6°h)(e) = f(e). For every edge (v, w) € (1), define the loop
L,y = Py o (v,w) o Pt We therefore have L{, 1 = ¢L,-1(p,w) = Pf o (v,w) o (P§)~". Observe that:

(50h)(v,w) = f(v,w) Aand htp(w) - h@(v) = f(va w) g EP{ﬁf - EP,j"f = E(v—nu)f <~ ELE"@AU)f = 0.
Hence (sampling ¢ ~ Aut(X) uniformly and e ~ 1), we have:
Bldist(6"h, )] = Pr[(6%h)(e) # F(e)] = PrlSef # 0] = PrlSpr.f #0] < By - dist(5' f,0)

where the third equality uses Fact B.2 (and that L = ¢L,-1.), and the inequality uses Corollary B.5, that
|Le| < 2Ry + 1, and the assumed tautness of X. O

C The absolute Dehn method

In this appendix, we reprove the absolute Dehn method of Kaufman and Oppenheim [KO21] using the
nonabelian cones method of Dikstein and Dinur [DD24b]. See Theorem C.23 below for a formal theorem
statement, which achieves slightly improved quantitative parameters.

C.1 Defining homotopy area

We define a notion of “homotopy area” based on equivalence relations on loops. This is essentially taken
from [DD24b, §4|, with the (very) minor technical difference that we allow repeated vertices in our walks,
and do not confine ourselves to walks with a single basepoint:

Definition C.1. Let X be a simplicial complex. We define a “trivial” equivalence relation 2 on the set of
loops in X as the smallest equivalence relation with the following property: If Wi is a walk from u to v, B

a backtracking loop at v, and W5 a walk from v to u, then W o Wy 2 W1 o BoW,. (Note that if Ly L Lo
then L; and Ly have the same basepoint.) O

Fact C.2. Suppose L and L’ are two loops at v and L X L. Then:
1. L1 2 (1)t
2. For every ¢ € Aut(X), oL R oL'.

8. If Wy is a walk from u to v and Wy a walk from v to u, then Wy o L o Wy 2 WioL oWs.
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Proof. In all three proofs, we induct on the length of the equivalence chain connecting L and L’; the base
case is that L = L’ in which case all three equalities hold trivially. For the inductive step, we show the
desired equivalences for L = Wj oWy and L' = Wj 0 Bo W, (where B is some backtracking loop). We verify:
(L)'= (WioBoWe) ' =Wy o BT oWt AW, oWt = (WioWa) ™! = (L),
pL' = (W10 BoW,) = Wi 0@BopWs X Wy 0@l = (Wi 0Ws) = ¢L,
WioL oWs=W/oW;0BoWyoWs~W,oW,oWsoWs=W,oLoW,. O

Definition C.3. Let L and L’ be two loops in X. We write L ~ L’ if there exist some {v,w,z} € X(2) and

walks W7 from u to v and Wy from w to w such that L 2 Wio(w — 2 — w)oWs and L’ 2 Wio(v— w)oW,
or vice versa. o

In algebraic topology, equivalence classes of loops under the transitive closure of A are called homotopy
classes.

Fact C.4. Suppose L and L' are two loops at v and L A L. Then:
1. L7V A (L)L
2. For every ¢ € Aut(X), oL A oL
3. If Wy is a walk from u to v and Wy a walk from v to u, then Wy o L o Wy A WioL oWs.

Proof. Suppose WLOG that L ~ W o (v—=2—w)— Wy and L AWy o (v = w) o Wy. We verify:

(IR Wy o (w—=v) oW AW o (w—a—v)o Wi LY
pL' 2 W1 0 (pv — pw) 0 pWa ~ W1 o (pv = gz — pw) 0 pWa ~ pL,
W/ oL oW, R W/ oWio(w—w)oWyoW,&W]oWyo(w—a—w)oWyoW,RW]oLoW). O

Definition C.5. Let X be a simplicial complex and L a loop in X. We define A, (L), the homotopy area
of L, as the minimum T such that there exist loops Lo, ..., Ly such that Ly is an empty (length-0) loop,

Lr=L,and Lo~ -~ L. O
Proposition C.6. The area function A, defined in Definition C.5 satisfies the axioms in Definition 3.2.

Proof. The backtracking walk property follows from the fact that W o W’ LWo (v —v)oW1 L (v), an
empty loop. Reversal and translation symmetries and subadditivity follow from Definition C.5 and iterated
application of Fact C.4. The unit area property follows from the fact that by definition, (v — v - w —

u) A (v — v — u — u), which is a backtracking walk and therefore has area 0.

Finally, for cyclic symmetry, if W; is a walk from u to v and W5 a walk from v to u, then W5 o W} ~
WyoWi0Wyo WQ_l. Hence by subadditivity and the backtracking property, A(Wa o W7) < A(W7 0 Wa) +
AWy oWy t) = AW o Wh). O

We also introduce:

Definition C.7. Let X be a d-dimensional simplicial complex (d > 2). We say that X is (Ro, R1)-
homotopically taut if for every proper loop L of length at most Ry, A, (L) < R;. O

C.2 Non-abelian coboundary expansion

In this appendix, we let I' denote an arbitrary multiplicative group. I' need not admit a ring structure;
indeed, it need not even be abelian.
We define coboundary
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Definition C.8. For X a d-dimensional complex and I'" any group. A 0-cochain f in X is an arbitrary
function f: X(0) = I'. A 1-cochain f in X is a function f : i(l) — T satisfying the antisymmetry property
that for every (u,v) € X(1), f(u,v) = f(v,u)"L. A 2-cochain f in X is a function f : X(2) — T satisfying the
antisymmetry property that for every (u,v,w) € X(2), f(u,v,w) = f(v,w,u) = f(w,u,v) = f(v,u,w)"* =
flu,w,v)™t = f(w,v,u)~t. We let C7(X;T) denote the set of all j-cochains for j € {0, 1,2}; this set admits
a (possibly nonabelian) group structure via (pointwise) multiplication. %
Again, as a group CY(X;T') is isomorphic to the |X(j)|-fold direct sum of T' (though the isomorphism
depends on choice of orientations).
Definition C.9. For X a d-dimensional complex, the 0-coboundary operator §° : C°(X;T) — C*(X;T) is
defined on O-cochains f by

(6°f)(u,v) = f(u) "' f(v)

for every (u,v) € (1). The 1-coboundary operator 8* : C1(%;T') — C%(X;T) is a homomorphism defined on
1-cochains f by
(6" f)(w,v,w) = f(u,0) f(v,0) f(w,u)

for every (u,v,w) € X(2). O
Fact C.10. For every f € C°(X;T), 6%(6°f) = 1.

Proof. Calculate

(61(8° 1)) (u, v, w) = ((8°F)(u, 0))((8° F) (v, w))((6° ) (w, w)) = (f(w) ™" F(0))(f ()" f(w))(f(w) " f(w)) = L.
O
Definition C.11. A 1-cocycle is a 1-chain f € C1(X;T) such that 6'f = 1; that is, for every oriented
triangle (u,v,w) € X(2),
fu ) f(o,w) f(w,u) = 1.
The 1-cocycles form a subgroup Z!(X;T) = ker§' C C'(X;T). Similarly, the group of 1-coboundaries is
BY(X;T) = imd° C Z'(X:;T) € CL(X;T). 0
Definition C.12. The 1-st cohomology group (over I') is the quotient group H*(X;T') :== Z*(X;T')/B(X;T).
The complex X is homologically 1-connected over T' (or “has trivial 1-homology over I') if BY(X;T) = Z1(X;T)
(equiv. HY(X;T) = 0). O
Definition C.13. For (X, 7) a weighted d-dimensional complex and I" a group, the distance between two
j-chains f and f’ is defined to be

dist(f, f') = Pr [f(a) # f'(o)].

O~V

The weight of a j-chain is wt(f) := dist(f, 1). O
Again, we need not specify an orientation for o.

Definition C.14. Suppose that whenever f is a 1-cochain over I' with dist(f, Z1(X;T')) > v, it holds that
dist(61 f,0) > €-v. Then we say that X has 1-cocycle expansion (at least) € over T, and we write h'(X;T)
for the least possible such e. O

Definition C.15. We define the 1-cosystole to be
sH (% T) = min{wt(f) : f € Z(%;T)\ BY(X; 1)}, (C.16)

with the convention s'(X;T") = 1 if the 1-th cohomology vanishes over T. O

Definition C.17. Suppose the 1-cocycle expansion over I satisfies h'(X;T) > e. If, moreover, s'(X;T) > u,
we say that X has 1-cosystolic expansion (at least) (e, ) over T'. If the 1-th cohomology in fact vanishes, X
is said to have 1-coboundary expansion (at least) e. O
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C.3 Non-abelian cones

We now state the following theorem:

Theorem C.18 (essentially [DD24b, Lemma 1.6]). Let X be a 2-dimensional complex. Assume that X is
strongly symmetric (and therefore mo is the uniform distribution on X(2)). If Rq is the diameter of X and X
is (2R + 1, Ry)-homologically taut over T', then X has 1-coboundary expansion at least 1/Ry over I.

This theorem is essentially proven in [DD24b, §4|, but we reprove it here because of minor technical
differences: We allow repeated vertices in our walks, and do not require them to maintain a fixed basepoint.
(Also, the proof is very similar to our preceding proof of the homology cones method.)

For a walk W = (vg — -+ — v;) and a l-cochain f € C1(X;T), we define

4
M f =[] f(vio1,v)

i=1

(where we simply discard the terms where v;_; = v;). Hence (Il f) - My f) = Hwow- f (assuming W’
begins where W ends) and (Ily f) ™! = Hyy—1 f.

Fact C.19. Let L, L' be loops and f € C*(X;T). If L R L', then ;L =T1I4L".

Proof. Similarly to the proof of Fact C.2, we can induct on the length of the equivalence chain connecting
L and L'. If L = L’ then the equality is trivial. Otherwise, inductively, we need to check the equality for
the case L = Wi 0 W5 and L' = W; o B o Wy (where B is some backtracking loop). Indeed,

Hrf = (w, f) - (Hw, f), while Iz f = (Ilw, f) - T f) - (T, f).

Hence, it is sufficient (and necessary) to check that IIgf = 1 for every backtracking loop B. Indeed, either
B=WoW=lor B=Wo(v—v)oWLin either case, lIgf = Iy f) - (Iyy—1f) = (Mwf) - w f)~ =
1. O

Fact C.20. Let L, L’ be loops and suppose that L A L. Then there exists a triangle t € X(2) such that for
every ¢ € Aut(X) and 1-cochain f € CH(X;T), if (6" f)(pt) =1, then I, f =y f.

Proof. Suppose that L & W o (v = a2 = w)o Wy and L' R Wy o (v — w) o Wy for some triangle
{v,w,z} € X(2). Hence oL 2 Wi o (pv = oz — pw) o Wy and oL/ 2 W1 o (pv — pw) o Wa. We define
t := {v,z,w}. Similarly to the previous proof,

Hwa = (Hcpwl f) : (H(L/JU—MDLE—HP’MJ)f) : (HAPW2f)7 while Iz f = (H¢W1 f) : (H(cpv—><pw)f) ’ (HSOVsz)'

Therefore, we need to check that if (6 f)(¢t) = 1, then Hipvoprspw)f = Mipvosew)f. Indeed, the LHS is

flpv, px) f(pr, pw) and the RHS is f(pv, pw); these are equal iff (8 f)(¢t) = f(pv, pz) f(pz, pw) f(pw, pv) =
1. O

Lemma C.21. Let L be a loop. Then there exists a set of triangles T C X(2) of size |T| < Ar(T") such that
for every ¢ € Aut(X) and 1-cochain f € C1(X;T), if T Nsupp(6' f) = 0, then L, f = 1.

Proof. Apply the previous fact iteratively together with the definition of homotopy area (Definition C.5). O

Lemma C.22. Let L be a loop and f a 1-cochain. Then for ¢ ~ Aut(X) uniformly and every group I':

}:Pr[HLPLf 7é ]]-} < ATI’(L) : diSt(alf’ ]]-)

Proof. Using the previous fact, exactly the same as the proof of Corollary B.5. [

Using this proposition, Theorem C.18 now follows exactly as Theorem 2.36 did (but with addition replaced
with multiplication, negation by inversion, and ¥’s by II's.)
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C.4 Statement of the method

Theorem C.23 (Absolute Dehn method). Consider the d-dimensional simplicial coset complex €E(G;H).
Suppose that there exist Ry, € N such that:

1. every element in G can be written as the evaluation of a length-(< Rg) word over H.
2. every w € Raop,+1 satisfies area(w; R§™™™) < 4.

Then €€(G;H) has diameter at most Ry and is (2Ro + 1,0(d))-homotopically taut, and therefore has 1-
coboundary expansion at least Q(%) over T for every T' (including nonabelian groups!).

We proceed similarly to the proof of Theorem 1.12.

Proof. Again, the first condition (by Proposition 1.6) implies that €€(G; H) has diameter at most Ry; for the
second, we consider a loop L of length at most 2Ry + 1 in €€(G;H). By Corollary 3.32 there exists a word w
over |JH of length at most 2Ry +1 such that A, (L) < (t+4¢)-area(w; Rs,0(Ax)). By assumption and using
Fact 3.21, area(w; R§P™™" A ) < area(w; R3,0(Ar)) < 0. Hence Ay (L) < (t44¢)-6 = O(§(t+¢)). Therefore,
CE(G;H) is (2Ry + 1,0((t + £)d))-homotopically taut, and we can conclude using Theorem C.18. O

D Explicit definitions of and statements for unipotent groups

In this appendix, we explicitly define the groups in and formally state our Theorem 5.5.

D.1 Explicit definitions of ungraded groups

Definition D.1 (Explicit definition of Ua,(Fy)). Let ¢ be a prime power. The group Ua, (F,) is given by
the following presentation: The generators are symbols {{(,t}} for ¢ € <I>JAF3 and t € F,. The relations are,
for every t,u € I, the commutator relations:

[{{a, 13, {8, ul}] = {a + B, tul},
ot} {a+8,ul}] = 1,
{8t Ha+ B,uli] = 1,

Het}}, v, ulil = 1,

{8, 831 v uh] = {8 + 7, tul,
{6, {8+ ull] =1,
vt {8+ ull] = 1,

Ho+ 8t {6+ v ul}] = 1,

{o, t}h, {8 + v, ull] = {a+ B+, tul},
{a+ 8,81, v, ul}] = {a+ 5+, tul},

Ho thh o+ B+y,ul}] =1,
{6, 1 {a+ B +7y,ulf] =1,
.t fa+B+7ull] =1,
Ho+ bt {a+ B+ ul}] =1,
{8+t {at+b+rul}] =1

and, for every ( € <I>j3, the linearity relations:

{6t - G uly = {G t+ul}
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Remark D.2. One can check that the following matrix realizations of these elements satisfy the above
relations:

1 ¢ 1 1
ot |1 T A0 ! Lo e | 1t
1 1 1
1 t 1 1 t
fatspe | L | Wy = ] Herstne | b
1 1 1

O

Remark D.3. One can also check that {{«,-}} and {{5,-}} elements generate a subgroup wherein every
element has a unique form {{a, -J{8, - }{{er+ B,-}}, and similarly for {{a,-}} and {{v,-}} elements (all
elements have the form {{a,-}}{{v,-}}) and for {3, -}} and {{~,-}} elements (all elements have the form

{8, . BB+, 1) %
We give similar definitions for the B3 unipotent groups:

Definition D.4 (Explicit definition of Ug?(F;)). Let ¢ be a prime power. The group Uz} (F,) is given by

the following presentation: The generators are symbols {{(,}} for ¢ € CI%“;’JF and t € Fy. The relations are,

for every t,u € Iy, the commutator relations:

{8t v ull] = {B + v, tu {8 + 20, tu®}},
{6, 3, {B+ ¢, ul}t] = 1,

{8, ¢, {6+ 2¢,ulf] = 1,

{13, {8 + ¢, ul] = {8 + 29, 2tu}},

{v. i3} {8+ 2¢,ul}] = 1,

{8+, 11, {8+ 2, uli] = 1,

{813, fw, ul}] = 1,

{.th, {w, ull] = {{¥ + w, 2tu},
o, i Y +wull] =1,
{w, ] {{Y +w,ul}] = 1,

[

[

[

[

[

[

[

[

[

[

{8+, th {v +w,ul}] =1,
[{{ﬂ + 2, t}}v {{w7 u}}] =1,
{8 +2¢,th {v+w,ull] =1,

{8+ ¢t o, ul}] = {B+ ¢ +w, 2tul},
{8, th {v +w,ul}l] = {8+ v +wtul},
B+ v +w, t}}, f{w,ul}] =1,
[{B+¢+wth {B:ul}] =1,

{8+ +w th {{, ul}] = 1,
{B+v+w,th {¢+wt}}] =1,

{8+ ¢ +wth, {8+t =1,

[{A+ +w thh, {8+ 20, th] =1,

and, for every ¢ € @Eﬂ*, the linearity relations:

{6t G uly = HG t+ul)
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Remark D.5.
relations:

{5t} =

{w,th) =

{v+wth e

{B+v+with—

1 —t
1
1
1 b
1
1 ¢t
1
1
1
1 —2t —t2
1 t
1
1
1
1
—t 1
1 b
1
1
t 1
1
1
—t 1
1
1
t 1
1

Definition D.6 (Explicit definition of U;ng (Fy)).

the following presentation: The generators are symbols {{¢,t}} for ¢ € @Ej and ¢t € F,. The relations are,
for every t,u € IFy, the commutator relations:

oot} {8, ult] = o + B, tul},

{ot}}, fa+ B, ul}] =1,
{6, 63} fa+ B, ulp] = 1,

Ha i1 oo, ul] = 1,

{8 1 v ull] = 4B + v, tupH{B + 20, tu? I},

{6, {8+ ¢, ul}] =1,

{v. )}

, {B+uth

{8 +2¢,t}}

|_>

2t

O

One can check that the following matrix realizations of these elements satisfy the above

O

Let ¢ be a prime power. The group U}i (Fy) is given by

{o. i1 {8 + ¥, ull] = ({8 + 24, 2tul,

Ho 13, {8 + 20, ul}] = 1,

{8+, 3}, {B + 20, ul}] = 1,
Ha+ 8,5, {8 +v,u}] =1,

{ot}, {a+ B+, ul}] =1,
{6.th {a+B+¢,ul}] =1,

[
[
[
[
[
[
{8, 1, {8 + 24, ul}] = 1,
[
[
[
[
[
[
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{oa+8,t} {a+B+4,ul}] =1,
{8 +2¢, ), {a+ B+, u}] = 1,

Ho ], {8 + 20, ul] = {a + 5 + 24, tul},
{a+ B+, ull, {{o, th] = {a + 5+ 2¢, —2tu}},

{at}}, {a+B6+2¢,ul}] =1,

Ho. t) {la+ 8+ 20, ul}] =1,

H{a+ 8t} {a+B+2¢,ul}] =1,
{B+v,th {a+B8+2¢,ul}] =1,
{B+2¢, 11, {{a+ B +2¢,ul}] =1,
Ha+ 8+, t3} {a+ B+ 2¢,ul}] =1,

o+ 8.t v, ul] = {a+ B8+, tul{{a + 8 + 20, tu?}},

[

[

[

[

[

[

[

[

[

[

[

o+ 8,13 {6 + 20, ull] = f{a + 26 + 2¢, —tul},
o+ B8+¢, 8 {8+ ¢, ull] = {a+ 26+ 2¢, —2tu}},
{o+ 8 +2¢, 63}, {8, ul}] = {a + 26+ 2¢, —tu}},

[
[
[
[
[
[
[
[
[

ot {8+ ¥, ult] = {{a+ B+ v, tuf{{a + 28 + 20, tu?}},

Hoothh, {a+28+2¢,ul}] =1,

{8t f{a+ 26 +2¢,ul}] =1,

{o, 11}, fa+ 28+ 24, ul}] =1,

o+ 8,15, {a+26+ 29, ul}] =1,
{8+, th f{a+268+2¢,ul}] =1,

B +2¢, 1)}, {a+28 +2¢,ul}] = 1,
o+ B8+, 13 {a+28+2¢,ul}] =1,
Ha+B+2¢, 1}, {{a+268+2¢,ul}] =1,

and, for every ( € <I>1§;+, the linearity relation and homogeneous commutator relations:

{oat+s+v.th{a+B+y,ull = {{a+ B+t +ul},

{a+B+9,th {a+B+9,ull] =1

O
Remark D.7. One can check that the following matrix realizations of these elements satisfy the above
relations:
1 1 —t
1 —t 1
1 1
{a, t}f = 1 , {Bth = 1
1 t 1
1 1 t
1 1
1 1 —t
1 1
1 1
{{wv t}} — —t 1 ) {{O[ + ﬂ7 t}} = 1
1 t
1

2t
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1 1
1 1
{{B + wa t}} = —t 1 ’ {{Ot + ﬁ + ¢, t}} = —t 1 5
1 —t2 2t 1
—t2 2t 1 1
1 1
1 1
1 1
1 1
{5 +20,t}) 1 . a2ty - 1 7
1 ¢ 1
t 1 1
—t 1 —t 1
1
1
1
fla+28+20,t)) 1
t 1
—t 1

D.2 Explicit definitions of graded groups

Recall our convention that [n] = {0,...,n}.

Definition D.8 (Explicit definition of GUa,(F,)). Let ¢ be a prime power. The group GUa, (F,) is given
by the following presentation: The generators are symbols (¢, t,14)) for ¢ € @jg_, t € Fy, and i € [height 4_(()]-
The relations are, for every ¢,u € F,, the heterogeneous commutator relations:

Vi, j € [1], (e, t, ), (B, 4))] = ((a+/3 tu, i+ j)),
Vie[1],5 € (2], (v, t,7)), (a +ﬁ7u =
Vie[1],5 € (2], [(B,t,9), (@ + B, u,j))] =

Vi, j € [1], (e, t,), (vsu, 5)] = 1,

Vi, j € [1], (Bt 2), (v, w, )] = (B + 7, tu, i+ j)),
vie[l],j € 2], [(B,t,9)), (B+7,u,5)] =1,
vie[l],7 € [2], (v, ), (B + v, u,5)] = 1,

Vi, j € [2], (e + B,t,9), (B+7,u,§)] =1,
vie[l],j € [2], (v, t,8)), (B+7,u, 5)] = (e + B+, tu, i +j)),
Vie 2,7 €1, [((c+ B,t,0)), (v, u, 9] = (e + B+, tu, i+ 7)),
vie[1],7 € [3], (e, t,), (v + B +7,u, )] = 1,
vie[1],7 € [3], [(B,t,4), (a+ B+ v,u,5)] =1,
Vie[l],j €3], (7, t,9)), (@ + B +v,u,5)] =1,
Vi€ [2],j €3], (e + B,t,3)), (a + B+ v, u,5)] =
Vi€ [2],7 € [3], (B +.t,0), (a+ B+ 7,u,5)] =

and, for every ( € <I>jg3, the linearity and homogeneous commutator relations:
Vi € [height 4, ()], (€t )G w, i) = (Gt +usi+ 7)),
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Vi, j € fheight 4, ()], (¢ t,4), (¢, )] = 1.
O

Remark D.9. The lifting homomorphism defined in Theorem 5.1 is easy to instantiate concretely once the
corresponding ungraded and graded groups have been defined. For instance, now that we have the definitions
of Ua,(Fy) and GUa, (Fx), given values t1, to, u1, ug, v1,v9 € Fyx, the homomorphism is defined via:

{a, wh = (o, wiy, ) (o, wto, 0)),
{8, wit = (B, wus, 1))(B, wuo, 0)),
Hvs wit = (v, wor, 1) (v, woo, 0)),
{a+ B, wl — (a+ B, wtiug, 2)) (o + B, w(tiug + tour), 1)) (o + B, wtguo, 0)),
{8+ v, wh = (B+7, wurvr, 2)) (B + v, w(uive + uov1), L) (B + v, wuovo, 0)),
{a+B+v,wl = (a+ B+, wtiuivr, 3))(a+ B + v, w(tiurvg + t1ugvr + touivy ), 2))
“((a+ B+, w(tiugvy + tourvg + tougvr), 1)) (o + B + v, wtougvo, 0)). O
Definition D.10 (Explicit definition of GUZ!(IF;)). Let g be a prime power. The group GUR!(FF,) is

given by the following presentation: The generators are symbols (((,¢,1)) for ¢ € fb%r;"Jr, t € Fy, and ¢ €
[height?”(¢)]. The relations are, for every ¢,u € F,, the heterogeneous commutator relations:

Vi, j € [1], (8,2, 4), (¥, u, J)] = ((ﬁ+1/) tu, i+ ) (B + 29, tu®, i + 27)),
Vi e (1], € [2], [(B,t,40), (B+¥,u. 4)] =
Vie[1],5 € [3], [(B,t,4), (B + 2¢,u, 5)] =
vie[l],j € [2], (0, t,9), (B + 9, u, 5)] = ((ﬁ + 29, 2tu, i + 7)),
vie[1],7 € 3], (0, t,9), (B+ 20, u,5))] =
Vi€ [2],5 € [3], (B + ¥, t,4), (B +2¢, ,J))] 1,
Vi, j € (1, [(B,t,9), (w,u, j)] =1,
Vi, j € (1, (0, t,9), (w,u, 5)] = (¢ + w, 2tu, i + 7)),
vie[l],j € [2], [, t,9), (¥ +w,u, )] =1,
Vi e (1], € [2], [(w,t,9), (¢ +w,u,5)] =1,
Vi, j € [2], (B +,t,0), (¥ + w,u, )] = 1,
Vie (3], €], (B + 24, ,9), (w,u, j)] =1,
Vi€ [3],7 € [2], (B +2¢,8,4), (¥ + w,u, j))] =
vie[2],jel], (B + 4, t,2)), (W, u, )] = (B + ¢ +w, 2tu,i + 7)),
Vi e (1], € [2], (B, t,9), (¥ + w,u, )] = (B+ ¥+ w, tu,i+ j)),
Vi € [3]7.]6 [1]’ [((5‘“/’4'@ t, Z))?((“’?u?.]))}:]la
Vi€ [3],7 € [1], ((B+ v +w,t,0), (B, u,))] =1,
Vi€ [3],7 € [1], ((B+v+w,t,i), (¥,u1)] =1,
Vi€ [3],5 € [2], (B +v +wt, Z)),((erw,t,J))]:
Vi€ [3],7 € [2], ((B+Y+w,t,0),(B+¢,t,5)] =
Vi€ [3],7 € [3], (B + 1 +w,t,4), (B +2¢,1,5)] =
and, for every ¢ € @SBI2’+, the linearity and homogeneous commutator relations:
BRG] (GG (G i)
Vig e gt Ol (G, ()] =
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Definition D.11 (Explicit definition of GU}gg3 (F,)). Let g be a prime power. The group GU};3 (F,) is given
by the following presentation: The generators are symbols (¢, ¢,4)) for € (I’lgi’f, teF, andie [heightlgg(g )]-
The relations are, for every t,u € IFy, the heterogeneous commutator relations:

Vi,je(l],  [(ot,2),(B,u,7)] = (a+ B, tu,i+ j)),
Viell,je2, [(eti),(a+B,u,j)] =1,
vie[l],je 2, [(B,t,0), (a+ B, u,j)] =1,
Vie 1,7 €], [(at9),(¥,uj)] =1
Vi,je(1],  [(B,t,9), (¢, u,5)] = (B + w tu,i+ 7)) (B + 20, tu?, i + 2j)),
Vie[l],j€2, [(B:t0), (B+,u,5)] =
vie[l],je 3], [(B,t,0),(B+2¢,u,5)] = IL
Vie[ll,jel2, [(¥t,),(8+¢,u )] = (B+2¢,2tu,i+ j)),
Vie 1,7 €3],  [(.t,9),(8+2¢,u,5)] =1,
Vie[2,je[3], [(B+¢,t,4),(8+2¢,u,))] =
Vi,je 2], [(a+B,t1),(8+¢,uj)] =
Vie (1,7 €3], [(a,t9),(a+B+vP,uj)] =1,
Vielll,je 3], [(B,t,i),(a+B+2,u,j)] =1,
Vie[2,jel3], [(a+8t0),(a+B+1,u,j5)] =1,
Vie[3,j€[3, [(B+2,t,0),(a+B+,u,j5)] =1,
Vie[l],j €3],  [(eut,i),(B+2¢,u,))] = (a+ B+ 20, tu,i+ j)),
Vie[l,je 3], [(a+B+1,u,), (¥t )] = (a+ B8+ 2¢, —2tu,i+ j)),
Vie[l,je[d], [(ot,1),(a+B+2¢,u,j)] =1,
Vie[ll,jed], [(t,1), (a+ B8+ 2¢,u,5)] =1,
Vie2,jeld], [(a+8t1), (a+B+2¢,u,j5) =1,
Vie2,jeld], [(B+¢,t,9),(a+B+2¢,u,5)] =1,
Vie 3,5, [(B+2¢,t,9),(a+B+2¢,u,5)] =1,
Vie3,jeld], [(a+B+¢,t1),(a+8+2¢,u,j5)] =1,
Vie2,je(t], [(a+B,t,9),(V,u7)] = (a+ B+, tui+ ) (a+ B+ 20, tu?,i + 2j)),
Viel2,je[3], [(a+8,t0),(B+2¢,u,j)] = (a+28+2¢, —tu,i+j)),
Vie[3l,je2, [(a+B+v,t,1),(B+v,u )] = (a+26+ 2, —2tu,i+ j)),
Vie[d,jel], [(a+B+2¢,t1), (8w i) = (a+28 +2¢, —tu,i+ j)),
Vielll,jel2, [(et,i),(B+ v, u, )] = (a+ B+ tu,i+j)(a+ 268+ 20, tu?, i+ 2j)),
Vie (1], €[5],  [(a,t9),(a+28+2¢,u,j)] =1,
Vie (1,5 €[5,  [(Bt0), (+26+2¢,u,5)] =1,
vie[l],j €[5,  [(¥,t,9), (a+28+2¢,u,5)] =1,
Vie2,j€[5], [(a+B,t19), (a+28+2¢,u,5)] =1,
Vie2],je[5], [(B+,t,9),(a+284+2¢,u,5)] =1,
Vie[3,je€B],  [(B+24,t,10), (+28+2¢,u,5)] =1,
Vie[3,jeB], [(a+B+1p,t,i), (a+28+2¢,u,j)] =1,
Vie[d,jel5], [(a+B+2¢,t,i), (a+28+2¢,u,j)] =1,
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and, for every ( € <I>1§;+, the linearity relation and homogeneous commutator relations:

Vi € [height'§, (Q)], (e + B+ ¢, t,0)(a+ B+, u,i) = (a+ B+, t+u,i),
Vi, j € [height's (C)],  [(a+ 8+, t,9), (a+ 8+ ,u,j)] = 1.

D.3 Explicit statements of lifting theorems

Theorem D.12 (Lifting theorem for GUa, (F,) [KO21]). There exist absolute constants ro and ¢ s.t. the
following holds. Let p be a prime (power) and k > 1 € N. For every t € F,x and i € [3], there exists an
alias word {(a+ B + v, t,1), of length at most rg, over the designated subgroups of GU a,(F,) which evaluates
o (a+ B +7,t,1), s.t. the following holds. Consider the following set of relations over the designated
subgroups of GUa,(Fq): For every t,u € Fpx

Vi, j € [1], (e, t,4), (B, w, 3)] = (@ + B, tu, i + )
Vie[l],5 € [2], (e, t,9), (e + By u, 7)) = 1,
vie[l],j €2, [(8,t,3), (e + B,u, j)] = 1
Vi7j € [1]’ [((o‘7t7i))’ ((77“7]))} =1,
Vi, j € [1], (B, t,2), (v, w, )] = (B + 7, tu, i + j)),
vie[l],5 € [2], (B, t,9), (B+7w )] =1,
viel],j € [2], [((v,t,9), (B + 7w, 5)] =1,
and for every ¢ € @jg \{a+8+7},
Vi € [height(()], (O (STE ((C t+u,i)),
Vi, j € [height(C)], (¢, t,4), (¢ w, )] =

as well as all relators which are lifts (in the sense of Theorem 5.1) of relators in Ua,(F,) of length at most
ro. From the aforementioned relators, for every t,u € F,x, it is possible derive in at most & steps: The
heterogeneous commutator relations:

Vi, j € [2], [((a+B,t,9), (B+7,u,5)] =1,
Vie[l],j€[2], [(a,t,2)), (B + 7, w,5)] = (a+ B + 7, tu, i + 7)),
Vi€ [2],5 € (1], [((a+8,t,0), (v,u,3)] = (@ + B + 7, tu,i+ j),
vie[l],j €3], [(a,t,2)), (+ B+, u,5)] = 1,
vie[1],5 € [3], [((8,t,2), (e + B+, u,5)] = 1,

Vi€ [1],5 €3], (v, 1)), (4 B+, u,4)] = 1L,
Vie[2],5 €3], [((a+ B, 1), (a+ B+7,u,j)] =1,
Vie[2],j €3], [((B+t,0), (a4 B+7,u, )] =1,
and the linearity and homogeneous commutator relations:
Vi e [3], {a+B+7.ti)(a+B8+7,u,1) = <<a+ﬂ—|—7,t—|—u i+ 7)),
vi,j € [3], [+ B+, t,0), {a+ B +7,u,5)] =

Theorem D.13 (Lifting theorem for GUR (IF,), formally verified in [WBCS25]). There exist absolute con-
stants 1o and § s.t. the following holds. Let p be a prime (power) and k > 1 € N. For every t € Fx
and i € [3], there exists an alias word {8+ ¥ + w,t,1)), of length at most ro, over the designated subgroups
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of GUZM(Fy) which evaluates to (8 + 1 + w,t,4)), s.t. the following holds. Consider the following set of
relations over the designated subgroups of GUE(Fy): For every t,u € Fpx,

vi,j € [1], (8, 2,0, (¢, u, )] = ((ﬁ+¢,tu i+ J)(B+ 20, tu? i + 2j)),
vie[l],j €2, [(8,£,4), (B + ¢, u,j)] =
Vie[l],j €3], [(8,£,4)), (B +2¢, u, j))] =
viel],je[2, (¥, 2,4), (B + v, u, 5)] = ((ﬁ + 29, 2tu, 1 + j)),
viel],j €3], (¥, 2,4)), (B + 20, u, 5))] =
Vie[2],5 €3], (B +,t,0), (B +2¢,u, ))] =1,
vi,j € [1], [(8,t,4), (@, u, 4)] = T,
vi,j € [1], (¥, 8,2), (W, w, 7)) = (¥ + w, 2tu, i + j)),
viel],je[2, (¢, t,4)), (¥ +w,u, j)] = 1,
vie[l],j €2, [(w,2,9), (¥ +w,u,5)] = 1,

and for every ¢ € @SBH;’+ \{B+ ¢ +w},

Vi € [height(C)], (€, £, ) (G us i) = (6, t+u i),
Vi, j € [height(¢)], (G2, 8), (G u 9))] =

as well as all relators which are lifts (in the sense of Theorem 5.1) of relators in Uy (F,) of length at most
ro. From the aforementioned relators, for every t,u € F,x, it is possible derive in at most § steps: The
heterogeneous commutator relations:

vi,j € [2], (B + v, t,2), (¢ +w,u, )] = 1,
vie[3],5 €1, [((B+2¢,8,0), (w,u, 7)) =1,
Vie[3],5 €2, (B +2¢,t,4), (¥ + w,u, j))] =
vie[2],5 €1, [((B+ . 8,0), (w,w, )] = (B + ¢ + w, 2tu, i + ),
vie[l],j €2, (B, 8,0), (¥ +w,u, )] = (B + ¢ +w, tu, i+ j)),
vie[3],5 € [1], (B + ¢ +wt,i), (w,u, )] = 1,
vie[3],5 €], (B + ¢ +w,t,i), (B u, )] =1,
vie[3],7 €], (B + ¢ +w,t,4), (¢, u, )] = 1,
vie[3],j €2, (B + v +wt,i), (¥ +w,t,5)] =
vie[3],j €2, [(B+ v +wt i), (B+.t,5)] =
Vie[3],j €3], (B + ¢ +w,t,4), (B+2¢,t,5)] =
and the linearity and homogeneous commutator relations:
vi € [3]; By +w ) (B+¢ +w,u,i)) = <<B+w+w t 4w i+ ),
Vi, j € [3], [((B+Y+w,t, i), (B+Y +w,u,j)] =

Theorem D.14 (Lifting theorem for GUJIBg3 (F,), formally verified in [WBCS25]). There exist absolute con-
stants To and & s.t. the following holds. Let p be a prime (power) and k > 1 € N. For every t € Fpx,

Cefa+B8+Y,a++2¢,a+28+2¢} andi € [heigh‘clg3 (€)], there exists an alias word {(,t,1)), of length
at most ro, over the designated subgroups of GUJIB,g3 (F,) which evaluates to (((,t,3)), s.t. the following holds.

Consider the following set of relations over the designated subgroups of GU}_.i (Fq): For every t,u € Fx,

vi,j €[], [(a,t,4), (B, u,5)] = ( + B, tu, i + ),
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Vie [1] JE [2]7 [((a,t,i))7((a+ﬂ,u,]))] =1,
Vie[l,jel2], [(B,t,9), (a+ B u,j)] =1,
Vie [1]7] € [1]7 [((a,t,i)% ((¢ u7]))] =1
Vi,je 1], [(B:t,0), (¥, us )] = (B + 4, tu,i + 5) (B + 29, tu?, i + 2j)),
Vie[ll,je2, [(Bti),(B+vY,uj)]=1,
vie[l],je 3], [(8,t,9),(B+2¢,u,j)] =1,
Vie[ll,je2], [(¥:t0),(B+vu i) = (B +2¢,2tu,i+ j)),
Vie[ll,je 3], [(¥.t,9),(B+2¢,u,j)] =1,
Vie2,j €8, [(B+t0),(B+2¢,u,75)] =

and for every ¢ € <I>lg N\ {a+ B+, a+ B+ 2, a+28+ 20}, the linearity and homogeneous commutator
relations

Vi € [height(C)], (¢, ,2) (¢, u, 1)) = (&, t+u i),
Vi, j € [height(Q)],  [(¢,¢,2)), (C,u, 5)] =
as well as all relators which are lifts (in the sense of Theorem 5.1) of relators in U}ng (Fp) of length at most

ro. From the aforementioned relators, for every t,u € Wk, it is possible derive in at most § steps: The
heterogeneous commutator relations:

Vi,j €2, [(a+B,t1),(B+v,uj)] =1,

viell,jeBl,  [(at,d),(a+B+Y,u )] =1,

Vie[l,jeBl,  [(6,ti), (a+B+uj) =1

vie[2,je8, [(a+Btd),(at+B+vuj) =

vie@Bl,je3, [(B+2¢,t,0), (a+ B+ uf)] =

Vie[l],je 3],  [(at,9), (8 +2¢,u,j)] = {a+ B+ 20, tu,i +j)),
vie[ll,jel3, [(a+8+,ui) (&.4))] = (a+ B+ 20, =2tu, i+ j),
viell,jeld,  [(a 1), (ot B+2¢,u,j)] =1,

viell,jeld, [(4,t0),(a+B+2¢,u,5)] =1

Viel2,jeld], [(a+B,t0), (a+B+2¢,uj)] =1,

Vie2,jeld], [(B+,ti), (atB+2¢,u, )] =1,

vie@Bl,jeld], [(B+2¢,t,0), (a+B+2¢,u )] =1,

vie[3ljed, [la+B+v,ta), (at+B+20,u5) =1,

vie2,jell],  [(a+p,t1), (¥,u )] = (o+ B+, tui+ i) {a+ B+ 2, tu? i + 24),
Vie2,je3], [(a+p8t4),(8+2¢,u,5)] = (a+26+2¢, —tu,i +j)),
vie@Blje2, [la+B+vt0), (84 u i) = {a+28+2), —2tu,i+j),
vie[d,jell],  [(a+8+20,60), (B u i)l = (@ +26 +2¢, —tu,i + j),
vie[llje2l, [(et,d),(B+v,u )] = o+ B+ tui+ j){a+ 28+ 2, tu?, i+ 27),
Vie[l,jel,  [(et ), (a+26+2¢,u,j)] =1,

vielt,jel,  [(B:t0), {a+26+2¢,u )] =1,

viell,jel, (40, (a+26+2¢,u,j)] = 1,

Vie2,jel5], [(a+8t0), (a+28+2¢,u,5)] =1,

Vie2,jel5], [(B+,ti), (a+28+2¢,u,5)] =1,
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vie@3l,jes],  [(B+2¢,t,0), (a+28+2¢,u,5)] =1,
Vie[3,je5], [(a+B+,t0), {a+28+2¢,u5)] =1,
Vield,jes], [(a+pB+24,t0), (a+28+2¢,u,j)] =1,

and, for every ¢ € {a+ B+, a+ B+ 2¢,a+ 20+ 24}, the linearity relation and homogeneous commutator
relations:

Vi € [height s (C)], (¢t N (¢, u i) = (¢t +u, i),
Vi, j € [height}§ ()], [(C.t.a), (¢ u, )] = 1.
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